awacke1's picture
Create app.py
00a6b9f
raw
history blame
10.7 kB
import streamlit as st
import folium
from folium.plugins import MarkerCluster
from streamlit_folium import folium_static
import googlemaps
from datetime import datetime
import os
# Initialize Google Maps
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_KEY'))
# Function to fetch directions
def get_directions_and_coords(source, destination):
now = datetime.now()
directions_info = gmaps.directions(source, destination, mode='driving', departure_time=now)
if directions_info:
steps = directions_info[0]['legs'][0]['steps']
coords = [(step['start_location']['lat'], step['start_location']['lng']) for step in steps]
return steps, coords
else:
return None, None
# Function to render map with directions
def render_folium_map(coords):
m = folium.Map(location=[coords[0][0], coords[0][1]], zoom_start=13)
folium.PolyLine(coords, color="blue", weight=2.5, opacity=1).add_to(m)
return m
# Function to add medical center paths and annotate distance
def add_medical_center_paths(m, source, med_centers):
for name, lat, lon, specialty, city in med_centers:
_, coords = get_directions_and_coords(source, (lat, lon))
if coords:
folium.PolyLine(coords, color="red", weight=2.5, opacity=1).add_to(m)
folium.Marker([lat, lon], popup=name).add_to(m)
distance_info = gmaps.distance_matrix(source, (lat, lon), mode='driving')
distance = distance_info['rows'][0]['elements'][0]['distance']['text']
folium.PolyLine(coords, color='red').add_to(m)
folium.map.Marker(
[coords[-1][0], coords[-1][1]],
icon=folium.DivIcon(
icon_size=(150, 36),
icon_anchor=(0, 0),
html=f'<div style="font-size: 10pt; color : red;">{distance}</div>',
)
).add_to(m)
# Driving Directions Sidebar
st.sidebar.header('Directions πŸš—')
source_location = st.sidebar.text_input("Source Location", "4 Brotherton Way, Auburn, MA 01501")
destination_location = st.sidebar.text_input("Destination Location", "366 Shrewsbury Street, Worcester, MA, 01604")
# Fetch and Display Directions
if st.sidebar.button('Get Directions'):
steps, coords = get_directions_and_coords(source_location, destination_location)
if steps and coords:
st.subheader('Driving Directions:')
for i, step in enumerate(steps):
st.write(f"{i+1}. {step['html_instructions']}")
st.subheader('Route on Map:')
m1 = render_folium_map(coords)
folium_static(m1)
else:
st.write("No available routes.")
# Massachusetts Medical Centers
st.markdown("### πŸ—ΊοΈ Maps - πŸ₯ Massachusetts Medical Centers 🌳")
m2 = folium.Map(location=[42.3601, -71.0589], zoom_start=8)
marker_cluster = MarkerCluster().add_to(m2)
massachusetts_med_centers = [
('The Endoscopy Center', 42.2098, -71.8356, '4 Brotherton Way, (508) 425-5446', 'Auburn'),
('ReadyMED – Auburn', 42.2090, -71.8358, '460 Southbridge Street, (508) 595-2700', 'Auburn'),
('Durable Medical Equipment', 42.2115, -71.8370, '42 Southbridge Street, (508) 407-7700', 'Auburn'),
('Auburn', 42.2098, -71.8356, '4 Brotherton Way, (508) 832-9621', 'Auburn'),
('Framingham', 42.2793, -71.4162, '761 Worcester Rd, (508) 872-1107', 'Framingham'),
('Holden', 42.3518, -71.8634, '64 Boyden Road, (508) 829-6765', 'Holden'),
('ReadyMED – Hudson', 42.3912, -71.5662, '234 Washington Street, (508) 595-2700', 'Hudson'),
('ReadyMED – Leominster', 42.5251, -71.7598, '241 North Main Street, (508) 595-2700', 'Leominster'),
('Leominster', 42.5204, -71.7717, '225 New Lancaster Road, (978) 534-6500', 'Leominster'),
('ReadyMED – Milford', 42.1487, -71.5152, '340 East Main Street, (508) 595-2700', 'Milford'),
('Milford', 42.1398, -71.5163, '101 Cedar Street, (508) 634-3100', 'Milford'),
('The Surgery Center', 42.2924, -71.7131, '151 Main St, (844) 258-4272', 'Shrewsbury'),
('Shrewsbury Occupational Medicine', 42.2930, -71.7240, '222 Boston Turnpike, (508) 853-2854', 'Shrewsbury'),
('Shrewsbury', 42.2865, -71.7147, '378 Maple Ave, (508) 368-7820', 'Shrewsbury'),
('Southborough', 42.3057, -71.5256, '24-28 Newton Street, (508) 481-5500', 'Southborough'),
('Webster', 42.0474, -71.8801, '344 Thompson Road, (508) 671-4050', 'Webster'),
('Westborough', 42.2695, -71.6161, '900 Union Street, (508) 366-8836', 'Westborough'),
('Worcester – Saint Vincent Cancer and Wellness Center', 42.2626, -71.8027, '1 Eaton Place, (508) 368-5430', 'Worcester'),
('Worcester – Neponset Street', 42.2614, -71.8007, '5 Neponset Street, (508) 368-7800', 'Worcester'),
('Worcester Medical Center', 42.2614, -71.8006, '123 Summer Street, (508) 852-0600', 'Worcester'),
('Worcester – Harding Street Rehabilitation & Sports Medicine', 42.2605, -71.8000, '112 Harding Street, (508) 964-5592', 'Worcester'),
('Worcester – Gold Star Boulevard Rehabilitation and Sports Medicine', 42.2910, -71.7999, '50 Gold Star Boulevard, (508) 856-9510', 'Worcester'),
('Worcester – Front Street', 42.2619, -71.8008, '100 Front Street, (508) 595-2000', 'Worcester'),
('Surgical Eye Experts', 42.2620, -71.8029, '385 Grove Street, (508) 453-8802', 'Worcester'),
('ReadyMED PLUS – Worcester', 42.2612, -71.8010, '366 Shrewsbury Street, (508) 595-2700', 'Worcester')
]
# Dropdown to select medical center to focus on
medical_center_names = [center[0] for center in massachusetts_med_centers]
selected_medical_center = st.selectbox("Select Medical Center to Focus On:", medical_center_names)
# Zoom into the selected medical center
for name, lat, lon, specialty, city in massachusetts_med_centers:
if name == selected_medical_center:
m2 = folium.Map(location=[lat, lon], zoom_start=15)
# Annotate distances and paths for each medical center
add_medical_center_paths(m2, source_location, massachusetts_med_centers)
folium_static(m2)
def Fairness():
# List of 10 Types of Bias πŸ˜“
st.markdown("### 10 Types of Bias in Geographical Healthcare Data πŸ‘©β€βš•οΈπŸŒ")
st.markdown("""
1. **Sampling Bias**: When the clinics or medical centers chosen for analysis do not represent the entire population.
2. **Confirmation Bias**: Picking clinics or centers that confirm pre-existing assumptions.
3. **Location Bias**: Focusing only on urban or rural areas.
4. **Temporal Bias**: Not considering the seasonality or time-sensitive factors.
5. **Accessibility Bias**: Overlooking clinics that are hard to reach but may offer unique specialties.
6. **Economic Bias**: Focusing only on wealthy areas.
7. **Size Bias**: Ignoring smaller clinics or new centers.
8. **Technology Bias**: Assuming higher tech facilities provide better care.
9. **Specialization Bias**: Overemphasis on one type of specialty.
10. **Reporting Bias**: Basing judgments on self-reported data without validation.
""")
# List of 10 Types of Fairness πŸ˜‡
st.markdown("### 10 Types of Fairness in Geographical Healthcare Data πŸŒπŸ‘©β€βš•οΈ")
st.markdown("""
1. **Geographical Fairness**: Equal representation of urban and rural areas.
2. **Socioeconomic Fairness**: Diverse economic statuses in the sample.
3. **Healthcare Need Fairness**: Clinics catering to various healthcare needs.
4. **Accessibility Fairness**: Including centers reachable by public transportation.
5. **Specialization Fairness**: A balanced view across various medical specialties.
6. **Temporal Fairness**: Data that accounts for seasonal or time-sensitive changes.
7. **Cultural Fairness**: Inclusion of centers serving diverse cultural communities.
8. **Demographic Fairness**: Representation across different age groups and genders.
9. **Quality of Care Fairness**: Balanced data on patient satisfaction and quality of care.
10. **Resource Allocation Fairness**: Fair distribution of resources among different centers.
""")
Fairness()
def Fairness2():
st.title("Bias and Fairness in Geographical Healthcare Data πŸŒπŸ‘©β€βš•οΈ")
st.markdown("### 10 Types of Bias in Geographical Healthcare Data πŸ‘©β€βš•οΈπŸŒ")
bias_types = {
"Sampling Bias": r"\frac{\text{Unrepresented Population}}{\text{Total Population}}",
"Confirmation Bias": r"\frac{\text{Data Confirming Assumptions}}{\text{Total Data Points}}",
"Location Bias": r"\left| \frac{\text{Urban Centers}}{\text{Rural Centers}} - 1 \right|",
"Temporal Bias": r"\frac{\text{Time-Sensitive Data Ignored}}{\text{Total Data Points}}",
"Accessibility Bias": r"\frac{\text{Inaccessible Clinics}}{\text{Total Clinics}}",
"Economic Bias": r"\frac{\text{Wealthy Area Clinics}}{\text{Total Clinics}}",
"Size Bias": r"\frac{\text{Ignored Small Clinics}}{\text{Total Clinics}}",
"Technology Bias": r"\frac{\text{High-Tech Clinics}}{\text{Total Clinics}}",
"Specialization Bias": r"\frac{\text{Overemphasized Specialties}}{\text{Total Specialties}}",
"Reporting Bias": r"\frac{\text{Unvalidated Reports}}{\text{Total Reports}}"
}
for bias, formula in bias_types.items():
st.markdown(f"**{bias}**")
st.latex(f"{formula}")
st.markdown("### 10 Types of Fairness in Geographical Healthcare Data πŸŒπŸ‘©β€βš•οΈ")
fairness_types = {
"Geographical Fairness": r"1 - \left| \frac{\text{Urban Centers}}{\text{Rural Centers}} - 1 \right|",
"Socioeconomic Fairness": r"\frac{\text{Diverse Economic Clinics}}{\text{Total Clinics}}",
"Healthcare Need Fairness": r"\frac{\text{Various Healthcare Need Clinics}}{\text{Total Clinics}}",
"Accessibility Fairness": r"\frac{\text{Accessible Clinics}}{\text{Total Clinics}}",
"Specialization Fairness": r"1 - \left| \frac{\text{Specialized Clinics}}{\text{General Clinics}} - 1 \right|",
"Temporal Fairness": r"1 - \frac{\text{Time-Sensitive Data Ignored}}{\text{Total Data Points}}",
"Cultural Fairness": r"\frac{\text{Diverse Cultural Clinics}}{\text{Total Clinics}}",
"Demographic Fairness": r"\frac{\text{Diverse Demographic Clinics}}{\text{Total Clinics}}",
"Quality of Care Fairness": r"\frac{\text{High-Quality Clinics}}{\text{Total Clinics}}",
"Resource Allocation Fairness": r"\frac{\text{Evenly Distributed Resources}}{\text{Total Resources}}"
}
for fairness, formula in fairness_types.items():
st.markdown(f"**{fairness}**")
st.latex(f"{formula}")
if __name__ == "__main__":
Fairness2()