Spaces:
Runtime error
Runtime error
import streamlit as st | |
import folium | |
from folium.plugins import MarkerCluster | |
from streamlit_folium import folium_static | |
import googlemaps | |
from datetime import datetime | |
import os | |
# Initialize Google Maps | |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_KEY')) | |
# Function to fetch directions | |
def get_directions_and_coords(source, destination): | |
now = datetime.now() | |
directions_info = gmaps.directions(source, destination, mode='driving', departure_time=now) | |
if directions_info: | |
steps = directions_info[0]['legs'][0]['steps'] | |
coords = [(step['start_location']['lat'], step['start_location']['lng']) for step in steps] | |
return steps, coords | |
else: | |
return None, None | |
# Function to render map with directions | |
def render_folium_map(coords): | |
m = folium.Map(location=[coords[0][0], coords[0][1]], zoom_start=13) | |
folium.PolyLine(coords, color="blue", weight=2.5, opacity=1).add_to(m) | |
return m | |
# Function to add medical center paths and annotate distance | |
def add_medical_center_paths(m, source, med_centers): | |
for name, lat, lon, specialty, city in med_centers: | |
_, coords = get_directions_and_coords(source, (lat, lon)) | |
if coords: | |
folium.PolyLine(coords, color="red", weight=2.5, opacity=1).add_to(m) | |
folium.Marker([lat, lon], popup=name).add_to(m) | |
distance_info = gmaps.distance_matrix(source, (lat, lon), mode='driving') | |
distance = distance_info['rows'][0]['elements'][0]['distance']['text'] | |
folium.PolyLine(coords, color='red').add_to(m) | |
folium.map.Marker( | |
[coords[-1][0], coords[-1][1]], | |
icon=folium.DivIcon( | |
icon_size=(150, 36), | |
icon_anchor=(0, 0), | |
html=f'<div style="font-size: 10pt; color : red;">{distance}</div>', | |
) | |
).add_to(m) | |
# Driving Directions Sidebar | |
st.sidebar.header('Directions π') | |
source_location = st.sidebar.text_input("Source Location", "4 Brotherton Way, Auburn, MA 01501") | |
destination_location = st.sidebar.text_input("Destination Location", "366 Shrewsbury Street, Worcester, MA, 01604") | |
# Fetch and Display Directions | |
if st.sidebar.button('Get Directions'): | |
steps, coords = get_directions_and_coords(source_location, destination_location) | |
if steps and coords: | |
st.subheader('Driving Directions:') | |
for i, step in enumerate(steps): | |
st.write(f"{i+1}. {step['html_instructions']}") | |
st.subheader('Route on Map:') | |
m1 = render_folium_map(coords) | |
folium_static(m1) | |
else: | |
st.write("No available routes.") | |
# Massachusetts Medical Centers | |
st.markdown("### πΊοΈ Maps - π₯ Massachusetts Medical Centers π³") | |
m2 = folium.Map(location=[42.3601, -71.0589], zoom_start=8) | |
marker_cluster = MarkerCluster().add_to(m2) | |
massachusetts_med_centers = [ | |
('The Endoscopy Center', 42.2098, -71.8356, '4 Brotherton Way, (508) 425-5446', 'Auburn'), | |
('ReadyMED β Auburn', 42.2090, -71.8358, '460 Southbridge Street, (508) 595-2700', 'Auburn'), | |
('Durable Medical Equipment', 42.2115, -71.8370, '42 Southbridge Street, (508) 407-7700', 'Auburn'), | |
('Auburn', 42.2098, -71.8356, '4 Brotherton Way, (508) 832-9621', 'Auburn'), | |
('Framingham', 42.2793, -71.4162, '761 Worcester Rd, (508) 872-1107', 'Framingham'), | |
('Holden', 42.3518, -71.8634, '64 Boyden Road, (508) 829-6765', 'Holden'), | |
('ReadyMED β Hudson', 42.3912, -71.5662, '234 Washington Street, (508) 595-2700', 'Hudson'), | |
('ReadyMED β Leominster', 42.5251, -71.7598, '241 North Main Street, (508) 595-2700', 'Leominster'), | |
('Leominster', 42.5204, -71.7717, '225 New Lancaster Road, (978) 534-6500', 'Leominster'), | |
('ReadyMED β Milford', 42.1487, -71.5152, '340 East Main Street, (508) 595-2700', 'Milford'), | |
('Milford', 42.1398, -71.5163, '101 Cedar Street, (508) 634-3100', 'Milford'), | |
('The Surgery Center', 42.2924, -71.7131, '151 Main St, (844) 258-4272', 'Shrewsbury'), | |
('Shrewsbury Occupational Medicine', 42.2930, -71.7240, '222 Boston Turnpike, (508) 853-2854', 'Shrewsbury'), | |
('Shrewsbury', 42.2865, -71.7147, '378 Maple Ave, (508) 368-7820', 'Shrewsbury'), | |
('Southborough', 42.3057, -71.5256, '24-28 Newton Street, (508) 481-5500', 'Southborough'), | |
('Webster', 42.0474, -71.8801, '344 Thompson Road, (508) 671-4050', 'Webster'), | |
('Westborough', 42.2695, -71.6161, '900 Union Street, (508) 366-8836', 'Westborough'), | |
('Worcester β Saint Vincent Cancer and Wellness Center', 42.2626, -71.8027, '1 Eaton Place, (508) 368-5430', 'Worcester'), | |
('Worcester β Neponset Street', 42.2614, -71.8007, '5 Neponset Street, (508) 368-7800', 'Worcester'), | |
('Worcester Medical Center', 42.2614, -71.8006, '123 Summer Street, (508) 852-0600', 'Worcester'), | |
('Worcester β Harding Street Rehabilitation & Sports Medicine', 42.2605, -71.8000, '112 Harding Street, (508) 964-5592', 'Worcester'), | |
('Worcester β Gold Star Boulevard Rehabilitation and Sports Medicine', 42.2910, -71.7999, '50 Gold Star Boulevard, (508) 856-9510', 'Worcester'), | |
('Worcester β Front Street', 42.2619, -71.8008, '100 Front Street, (508) 595-2000', 'Worcester'), | |
('Surgical Eye Experts', 42.2620, -71.8029, '385 Grove Street, (508) 453-8802', 'Worcester'), | |
('ReadyMED PLUS β Worcester', 42.2612, -71.8010, '366 Shrewsbury Street, (508) 595-2700', 'Worcester') | |
] | |
# Dropdown to select medical center to focus on | |
medical_center_names = [center[0] for center in massachusetts_med_centers] | |
selected_medical_center = st.selectbox("Select Medical Center to Focus On:", medical_center_names) | |
# Zoom into the selected medical center | |
for name, lat, lon, specialty, city in massachusetts_med_centers: | |
if name == selected_medical_center: | |
m2 = folium.Map(location=[lat, lon], zoom_start=15) | |
# Annotate distances and paths for each medical center | |
add_medical_center_paths(m2, source_location, massachusetts_med_centers) | |
folium_static(m2) | |
def Fairness(): | |
# List of 10 Types of Bias π | |
st.markdown("### 10 Types of Bias in Geographical Healthcare Data π©ββοΈπ") | |
st.markdown(""" | |
1. **Sampling Bias**: When the clinics or medical centers chosen for analysis do not represent the entire population. | |
2. **Confirmation Bias**: Picking clinics or centers that confirm pre-existing assumptions. | |
3. **Location Bias**: Focusing only on urban or rural areas. | |
4. **Temporal Bias**: Not considering the seasonality or time-sensitive factors. | |
5. **Accessibility Bias**: Overlooking clinics that are hard to reach but may offer unique specialties. | |
6. **Economic Bias**: Focusing only on wealthy areas. | |
7. **Size Bias**: Ignoring smaller clinics or new centers. | |
8. **Technology Bias**: Assuming higher tech facilities provide better care. | |
9. **Specialization Bias**: Overemphasis on one type of specialty. | |
10. **Reporting Bias**: Basing judgments on self-reported data without validation. | |
""") | |
# List of 10 Types of Fairness π | |
st.markdown("### 10 Types of Fairness in Geographical Healthcare Data ππ©ββοΈ") | |
st.markdown(""" | |
1. **Geographical Fairness**: Equal representation of urban and rural areas. | |
2. **Socioeconomic Fairness**: Diverse economic statuses in the sample. | |
3. **Healthcare Need Fairness**: Clinics catering to various healthcare needs. | |
4. **Accessibility Fairness**: Including centers reachable by public transportation. | |
5. **Specialization Fairness**: A balanced view across various medical specialties. | |
6. **Temporal Fairness**: Data that accounts for seasonal or time-sensitive changes. | |
7. **Cultural Fairness**: Inclusion of centers serving diverse cultural communities. | |
8. **Demographic Fairness**: Representation across different age groups and genders. | |
9. **Quality of Care Fairness**: Balanced data on patient satisfaction and quality of care. | |
10. **Resource Allocation Fairness**: Fair distribution of resources among different centers. | |
""") | |
Fairness() | |
def Fairness2(): | |
st.title("Bias and Fairness in Geographical Healthcare Data ππ©ββοΈ") | |
st.markdown("### 10 Types of Bias in Geographical Healthcare Data π©ββοΈπ") | |
bias_types = { | |
"Sampling Bias": r"\frac{\text{Unrepresented Population}}{\text{Total Population}}", | |
"Confirmation Bias": r"\frac{\text{Data Confirming Assumptions}}{\text{Total Data Points}}", | |
"Location Bias": r"\left| \frac{\text{Urban Centers}}{\text{Rural Centers}} - 1 \right|", | |
"Temporal Bias": r"\frac{\text{Time-Sensitive Data Ignored}}{\text{Total Data Points}}", | |
"Accessibility Bias": r"\frac{\text{Inaccessible Clinics}}{\text{Total Clinics}}", | |
"Economic Bias": r"\frac{\text{Wealthy Area Clinics}}{\text{Total Clinics}}", | |
"Size Bias": r"\frac{\text{Ignored Small Clinics}}{\text{Total Clinics}}", | |
"Technology Bias": r"\frac{\text{High-Tech Clinics}}{\text{Total Clinics}}", | |
"Specialization Bias": r"\frac{\text{Overemphasized Specialties}}{\text{Total Specialties}}", | |
"Reporting Bias": r"\frac{\text{Unvalidated Reports}}{\text{Total Reports}}" | |
} | |
for bias, formula in bias_types.items(): | |
st.markdown(f"**{bias}**") | |
st.latex(f"{formula}") | |
st.markdown("### 10 Types of Fairness in Geographical Healthcare Data ππ©ββοΈ") | |
fairness_types = { | |
"Geographical Fairness": r"1 - \left| \frac{\text{Urban Centers}}{\text{Rural Centers}} - 1 \right|", | |
"Socioeconomic Fairness": r"\frac{\text{Diverse Economic Clinics}}{\text{Total Clinics}}", | |
"Healthcare Need Fairness": r"\frac{\text{Various Healthcare Need Clinics}}{\text{Total Clinics}}", | |
"Accessibility Fairness": r"\frac{\text{Accessible Clinics}}{\text{Total Clinics}}", | |
"Specialization Fairness": r"1 - \left| \frac{\text{Specialized Clinics}}{\text{General Clinics}} - 1 \right|", | |
"Temporal Fairness": r"1 - \frac{\text{Time-Sensitive Data Ignored}}{\text{Total Data Points}}", | |
"Cultural Fairness": r"\frac{\text{Diverse Cultural Clinics}}{\text{Total Clinics}}", | |
"Demographic Fairness": r"\frac{\text{Diverse Demographic Clinics}}{\text{Total Clinics}}", | |
"Quality of Care Fairness": r"\frac{\text{High-Quality Clinics}}{\text{Total Clinics}}", | |
"Resource Allocation Fairness": r"\frac{\text{Evenly Distributed Resources}}{\text{Total Resources}}" | |
} | |
for fairness, formula in fairness_types.items(): | |
st.markdown(f"**{fairness}**") | |
st.latex(f"{formula}") | |
if __name__ == "__main__": | |
Fairness2() | |