Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from autogen import AssistantAgent, UserProxyAgent, config_list_from_json
|
2 |
+
import autogen
|
3 |
+
import replicate
|
4 |
+
import requests
|
5 |
+
from datetime import datetime
|
6 |
+
import http.client
|
7 |
+
import json
|
8 |
+
import base64
|
9 |
+
|
10 |
+
config_list = config_list_from_json(env_or_file="OAI_CONFIG_LIST")
|
11 |
+
llm_config = {"config_list": config_list, "request_timeout": 120}
|
12 |
+
|
13 |
+
# function to use llava model to review image
|
14 |
+
|
15 |
+
|
16 |
+
def img_review(image_url, prompt):
|
17 |
+
data = {
|
18 |
+
"data": [
|
19 |
+
{
|
20 |
+
"image": "https://picsum.photos/200",
|
21 |
+
"features": [],
|
22 |
+
},
|
23 |
+
]}
|
24 |
+
|
25 |
+
headers = {
|
26 |
+
"x-api-key": "token 8uOw4ntevc8JKo0Q3tQq:2975e2827ebeb4e103f7b58c1410ba58fa47bc27b1302de614a000bf51bd2114",
|
27 |
+
"content-type": "application/json",
|
28 |
+
}
|
29 |
+
|
30 |
+
connection = http.client.HTTPSConnection("api.scenex.jina.ai")
|
31 |
+
connection.request("POST", "/v1/describe", json.dumps(data), headers)
|
32 |
+
response = connection.getresponse()
|
33 |
+
|
34 |
+
print(response.status, response.reason)
|
35 |
+
response_data = response.read().decode("utf-8")
|
36 |
+
print(response_data)
|
37 |
+
|
38 |
+
connection.close()
|
39 |
+
|
40 |
+
return response_data
|
41 |
+
|
42 |
+
|
43 |
+
result = img_review(
|
44 |
+
"https://cdn.discordapp.com/attachments/1083723388712919182/1089909178266558554/HannaD_A_captivating_digital_artwork_features_a_red-haired_girl_664d73dc-b537-490e-b044-4fbf22733559.png", "a llama driving a car")
|
45 |
+
print(result)
|
46 |
+
|
47 |
+
# def img_review(image_path, prompt):
|
48 |
+
# output = replicate.run(
|
49 |
+
# "yorickvp/llava-13b:6bc1c7bb0d2a34e413301fee8f7cc728d2d4e75bfab186aa995f63292bda92fc",
|
50 |
+
# input={
|
51 |
+
# "image": open(image_path, "rb"),
|
52 |
+
# "prompt": f"What is happening in the image? From scale 1 to 10, decide how similar the image is to the text prompt {prompt}?",
|
53 |
+
# }
|
54 |
+
# )
|
55 |
+
|
56 |
+
# result = ""
|
57 |
+
# for item in output:
|
58 |
+
# result += item
|
59 |
+
|
60 |
+
# return result
|
61 |
+
|
62 |
+
|
63 |
+
# function to use stability-ai model to generate image
|
64 |
+
def text_to_image_generation(prompt):
|
65 |
+
output = replicate.run(
|
66 |
+
"stability-ai/sdxl:c221b2b8ef527988fb59bf24a8b97c4561f1c671f73bd389f866bfb27c061316",
|
67 |
+
input={
|
68 |
+
"prompt": prompt
|
69 |
+
}
|
70 |
+
)
|
71 |
+
|
72 |
+
if output and len(output) > 0:
|
73 |
+
# Get the image URL from the output
|
74 |
+
image_url = output[0]
|
75 |
+
print(f"generated image for {prompt}: {image_url}")
|
76 |
+
|
77 |
+
# Download the image and save it with a filename based on the prompt and current time
|
78 |
+
current_time = datetime.now().strftime("%Y%m%d%H%M%S")
|
79 |
+
shortened_prompt = prompt[:50]
|
80 |
+
filename = f"imgs/{shortened_prompt}_{current_time}.png"
|
81 |
+
|
82 |
+
response = requests.get(image_url)
|
83 |
+
if response.status_code == 200:
|
84 |
+
with open(filename, "wb") as file:
|
85 |
+
file.write(response.content)
|
86 |
+
return f"Image saved as '{filename}'"
|
87 |
+
else:
|
88 |
+
return "Failed to download and save the image."
|
89 |
+
else:
|
90 |
+
return "Failed to generate the image."
|
91 |
+
|
92 |
+
|
93 |
+
# Create llm config
|
94 |
+
llm_config_assistants = {
|
95 |
+
"functions": [
|
96 |
+
{
|
97 |
+
"name": "text_to_image_generation",
|
98 |
+
"description": "use latest AI model to generate image based on a prompt, return the file path of image generated",
|
99 |
+
"parameters": {
|
100 |
+
"type": "object",
|
101 |
+
"properties": {
|
102 |
+
"prompt": {
|
103 |
+
"type": "string",
|
104 |
+
"description": "a great text to image prompt that describe the image",
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"required": ["prompt"],
|
108 |
+
},
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"name": "image_review",
|
112 |
+
"description": "review & critique the AI generated image based on original prompt, decide how can images & prompt can be improved",
|
113 |
+
"parameters": {
|
114 |
+
"type": "object",
|
115 |
+
"properties": {
|
116 |
+
"prompt": {
|
117 |
+
"type": "string",
|
118 |
+
"description": "the original prompt used to generate the image",
|
119 |
+
},
|
120 |
+
"image_path": {
|
121 |
+
"type": "string",
|
122 |
+
"description": "the image file path, make sure including the full file path & file extension",
|
123 |
+
}
|
124 |
+
},
|
125 |
+
"required": ["prompt", "image_path"],
|
126 |
+
},
|
127 |
+
},
|
128 |
+
],
|
129 |
+
"config_list": config_list,
|
130 |
+
"request_timeout": 120}
|
131 |
+
|
132 |
+
# Create assistant agent
|
133 |
+
img_gen_assistant = AssistantAgent(
|
134 |
+
name="text_to_img_prompt_expert",
|
135 |
+
system_message="You are a text to image AI model expert, you will use text_to_image_generation function to generate image with prompt provided, and also improve prompt based on feedback provided until it is 10/10.",
|
136 |
+
llm_config=llm_config_assistants,
|
137 |
+
function_map={
|
138 |
+
"image_review": img_review,
|
139 |
+
"text_to_image_generation": text_to_image_generation
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
+
img_critic_assistant = AssistantAgent(
|
144 |
+
name="img_critic",
|
145 |
+
system_message="You are an AI image critique, you will use img_review function to review the image generated by the text_to_img_prompt_expert against the original prompt, and provide feedback on how to improve the prompt.",
|
146 |
+
llm_config=llm_config_assistants,
|
147 |
+
function_map={
|
148 |
+
"image_review": img_review,
|
149 |
+
"text_to_image_generation": text_to_image_generation
|
150 |
+
}
|
151 |
+
)
|
152 |
+
|
153 |
+
# Create user proxy agent
|
154 |
+
user_proxy = UserProxyAgent(
|
155 |
+
name="user_proxy",
|
156 |
+
human_input_mode="ALWAYS",
|
157 |
+
)
|
158 |
+
|
159 |
+
# Create groupchat
|
160 |
+
groupchat = autogen.GroupChat(
|
161 |
+
agents=[user_proxy, img_gen_assistant, img_critic_assistant], messages=[], max_round=50)
|
162 |
+
|
163 |
+
manager = autogen.GroupChatManager(
|
164 |
+
groupchat=groupchat,
|
165 |
+
llm_config=llm_config)
|
166 |
+
|
167 |
+
# # Start the conversation
|
168 |
+
# user_proxy.initiate_chat(
|
169 |
+
# manager, message="Generate a photo realistic image of llama driving a car")
|