James McCool
commited on
Commit
·
d1ddee5
1
Parent(s):
e722ab0
Add custom tab styling to improve UI aesthetics and user experience
Browse filesImplement custom CSS styling for Streamlit tabs to:
- Enhance visual appeal with gold color scheme
- Improve tab readability and interaction
- Add smooth transitions and hover effects
- Create a more polished and professional look for the application interface
app.py
CHANGED
@@ -38,6 +38,37 @@ expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'}
|
|
38 |
|
39 |
all_dk_player_projections = st.secrets["NFL_data"]
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
@st.cache_resource(ttl=60)
|
42 |
def init_baselines():
|
43 |
collection = nba_db["Player_SD_Range_Of_Outcomes"]
|
@@ -115,55 +146,56 @@ def convert_df_to_csv(df):
|
|
115 |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimizer'])
|
116 |
|
117 |
with tab1:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
if
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
|
168 |
hold_container = st.empty()
|
169 |
|
@@ -204,14 +236,13 @@ with tab1:
|
|
204 |
)
|
205 |
|
206 |
with tab2:
|
207 |
-
|
208 |
-
with col1:
|
209 |
if st.button("Load/Reset Data", key='reset1'):
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
sport_var1 = st.radio("What sport are you optimizing?", ('
|
215 |
if sport_var1 == 'NBA':
|
216 |
dk_roo_raw = nba_dk_sd_raw
|
217 |
fd_roo_raw = nba_fd_sd_raw
|
@@ -243,7 +274,7 @@ with tab2:
|
|
243 |
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
|
244 |
raw_baselines = fd_roo_raw
|
245 |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
|
246 |
-
|
247 |
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
|
248 |
lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
|
249 |
lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2')
|
@@ -350,329 +381,328 @@ with tab2:
|
|
350 |
flex_proj['Own'] = display_baselines['Own']
|
351 |
flex_proj['lock'] = display_baselines['lock']
|
352 |
flex_proj['roster'] = 'FLEX'
|
353 |
-
|
354 |
-
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
|
355 |
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
display_container = st.empty()
|
358 |
display_dl_container = st.empty()
|
359 |
optimize_container = st.empty()
|
360 |
download_container = st.empty()
|
361 |
freq_container = st.empty()
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
flex_file.
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
overall_players = flex_file[['Player']]
|
399 |
-
overall_players['player_var_add'] = flex_file.index
|
400 |
-
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
401 |
-
|
402 |
-
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
403 |
-
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
404 |
-
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
405 |
-
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
406 |
-
|
407 |
-
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
408 |
-
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
|
409 |
-
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
|
410 |
-
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
411 |
-
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
412 |
-
|
413 |
-
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
414 |
-
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
415 |
-
|
416 |
-
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
417 |
-
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
418 |
-
|
419 |
-
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
420 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
|
421 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
|
422 |
-
|
423 |
-
if site_var1 == 'Draftkings':
|
424 |
-
|
425 |
-
for flex in flex_file['lock'].unique():
|
426 |
-
sub_idx = flex_file[flex_file['lock'] == 1].index
|
427 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
428 |
-
|
429 |
-
for flex in flex_file['roster'].unique():
|
430 |
-
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
431 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
432 |
-
|
433 |
-
for flex in flex_file['roster'].unique():
|
434 |
-
sub_idx = flex_file[flex_file['roster'] == "FLEX"].index
|
435 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
436 |
-
|
437 |
-
for playerid in player_ids:
|
438 |
-
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
|
439 |
-
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
|
440 |
-
|
441 |
-
elif site_var1 == 'Fanduel':
|
442 |
-
|
443 |
-
for flex in flex_file['lock'].unique():
|
444 |
-
sub_idx = flex_file[flex_file['lock'] == 1].index
|
445 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
446 |
-
|
447 |
-
for flex in flex_file['Position'].unique():
|
448 |
-
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
449 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
450 |
-
|
451 |
-
for flex in flex_file['roster'].unique():
|
452 |
-
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
453 |
-
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
454 |
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
player_trim = []
|
461 |
-
lineup_list = []
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
total_score +=
|
466 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
|
467 |
-
elif contest_var1 != 'Cash':
|
468 |
-
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
469 |
-
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
470 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
|
471 |
-
if trim_var1 == 1:
|
472 |
-
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
|
473 |
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
lineup_list.append(v.name)
|
478 |
-
df = pd.DataFrame(lineup_list)
|
479 |
-
df['Names'] = df[0].map(player_match)
|
480 |
-
df['Cost'] = df['Names'].map(player_sal)
|
481 |
-
df['Proj'] = df['Names'].map(player_proj)
|
482 |
-
df['Own'] = df['Names'].map(player_own)
|
483 |
-
total_cost = sum(df['Cost'])
|
484 |
-
total_own = sum(df['Own'])
|
485 |
-
total_proj = sum(df['Proj'])
|
486 |
-
lineup_raw = pd.DataFrame(lineup_list)
|
487 |
-
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
488 |
-
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
489 |
-
lineup_final = lineup_raw.sort_values(by=['value'])
|
490 |
-
del lineup_final[lineup_final.columns[0]]
|
491 |
-
del lineup_final[lineup_final.columns[1]]
|
492 |
-
lineup_final['Team'] = lineup_final['Names'].map(player_team)
|
493 |
-
lineup_final['Position'] = lineup_final['Names'].map(player_pos)
|
494 |
-
lineup_final['Salary'] = lineup_final['Names'].map(player_sal)
|
495 |
-
lineup_final['Proj'] = lineup_final['Names'].map(player_proj)
|
496 |
-
lineup_final['Own'] = lineup_final['Names'].map(player_own)
|
497 |
-
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
|
498 |
-
lineup_final = lineup_final.reset_index(drop=True)
|
499 |
-
|
500 |
-
max_proj = total_proj
|
501 |
-
max_own = total_own
|
502 |
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
526 |
if site_var1 == 'Draftkings':
|
527 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
elif site_var1 == 'Fanduel':
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
st.session_state.portfolio = portfolio.drop_duplicates()
|
537 |
|
538 |
-
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
540 |
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
|
|
|
|
|
|
|
|
|
|
549 |
|
550 |
-
final_outcomes_export =
|
551 |
-
|
|
|
|
|
|
|
|
|
552 |
|
553 |
-
if
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
final_outcomes_export['MVP'] = split_portfolio['MVP']
|
611 |
-
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
|
612 |
-
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
|
613 |
-
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
|
614 |
-
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
|
615 |
-
|
616 |
-
if sport_var1 == 'NFL':
|
617 |
-
final_outcomes_export['MVP'].replace(nfl_fd_id_dict, inplace=True)
|
618 |
-
final_outcomes_export['FLEX1'].replace(nfl_fd_id_dict, inplace=True)
|
619 |
-
final_outcomes_export['FLEX2'].replace(nfl_fd_id_dict, inplace=True)
|
620 |
-
final_outcomes_export['FLEX3'].replace(nfl_fd_id_dict, inplace=True)
|
621 |
-
final_outcomes_export['FLEX4'].replace(nfl_fd_id_dict, inplace=True)
|
622 |
-
elif sport_var1 == 'NBA':
|
623 |
-
final_outcomes_export['MVP'].replace(nba_fd_id_dict, inplace=True)
|
624 |
-
final_outcomes_export['FLEX1'].replace(nba_fd_id_dict, inplace=True)
|
625 |
-
final_outcomes_export['FLEX2'].replace(nba_fd_id_dict, inplace=True)
|
626 |
-
final_outcomes_export['FLEX3'].replace(nba_fd_id_dict, inplace=True)
|
627 |
-
final_outcomes_export['FLEX4'].replace(nba_fd_id_dict, inplace=True)
|
628 |
-
final_outcomes_export['Salary'] = final_outcomes['Cost']
|
629 |
-
final_outcomes_export['Own'] = final_outcomes['Own']
|
630 |
-
final_outcomes_export['Proj'] = final_outcomes['Proj']
|
631 |
-
|
632 |
-
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
|
633 |
-
|
634 |
-
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
|
635 |
-
with display_container:
|
636 |
-
display_container = st.empty()
|
637 |
-
if 'display_baselines' in st.session_state:
|
638 |
-
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
639 |
-
|
640 |
-
with display_dl_container:
|
641 |
-
display_dl_container = st.empty()
|
642 |
-
if 'export_baselines' in st.session_state:
|
643 |
-
st.download_button(
|
644 |
-
label="Export Projections",
|
645 |
-
data=convert_df_to_csv(st.session_state.export_baselines),
|
646 |
-
file_name='showdown_proj_export.csv',
|
647 |
-
mime='text/csv',
|
648 |
-
)
|
649 |
-
|
650 |
-
with optimize_container:
|
651 |
-
optimize_container = st.empty()
|
652 |
-
if 'final_outcomes' in st.session_state:
|
653 |
-
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
654 |
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
if '
|
659 |
-
st.
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
)
|
665 |
-
elif site_var1 == 'Fanduel':
|
666 |
-
if 'FD_final_outcomes_export' in st.session_state:
|
667 |
st.download_button(
|
668 |
-
label="Export
|
669 |
-
data=convert_df_to_csv(st.session_state.
|
670 |
-
file_name='
|
671 |
mime='text/csv',
|
672 |
-
)
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
all_dk_player_projections = st.secrets["NFL_data"]
|
40 |
|
41 |
+
st.markdown("""
|
42 |
+
<style>
|
43 |
+
/* Tab styling */
|
44 |
+
.stTabs [data-baseweb="tab-list"] {
|
45 |
+
gap: 8px;
|
46 |
+
padding: 4px;
|
47 |
+
}
|
48 |
+
|
49 |
+
.stTabs [data-baseweb="tab"] {
|
50 |
+
height: 50px;
|
51 |
+
white-space: pre-wrap;
|
52 |
+
background-color: #FFD700;
|
53 |
+
color: white;
|
54 |
+
border-radius: 10px;
|
55 |
+
gap: 1px;
|
56 |
+
padding: 10px 20px;
|
57 |
+
font-weight: bold;
|
58 |
+
transition: all 0.3s ease;
|
59 |
+
}
|
60 |
+
|
61 |
+
.stTabs [aria-selected="true"] {
|
62 |
+
background-color: #DAA520;
|
63 |
+
color: white;
|
64 |
+
}
|
65 |
+
|
66 |
+
.stTabs [data-baseweb="tab"]:hover {
|
67 |
+
background-color: #DAA520;
|
68 |
+
cursor: pointer;
|
69 |
+
}
|
70 |
+
</style>""", unsafe_allow_html=True)
|
71 |
+
|
72 |
@st.cache_resource(ttl=60)
|
73 |
def init_baselines():
|
74 |
collection = nba_db["Player_SD_Range_Of_Outcomes"]
|
|
|
146 |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimizer'])
|
147 |
|
148 |
with tab1:
|
149 |
+
with st.expander('Info and Filters'):
|
150 |
+
if st.button("Load/Reset Data", key='reset2'):
|
151 |
+
st.cache_data.clear()
|
152 |
+
nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines()
|
153 |
+
info_container = st.container()
|
154 |
+
with info_container:
|
155 |
+
st.info("Simple view is better for mobile and shows just the most valuable stats, Advanced view is better for desktop and shows all stats and thresholds")
|
156 |
+
options_container = st.container()
|
157 |
+
with options_container:
|
158 |
+
col1, col2, col3, col4 = st.columns(4)
|
159 |
+
|
160 |
+
with col1:
|
161 |
+
view_var2 = st.radio("View Type", ("Simple", "Advanced"), key='view_var2')
|
162 |
+
|
163 |
+
with col2:
|
164 |
+
sport_var2 = st.radio("Sport", ('NBA', 'NFL'), key='sport_var2')
|
165 |
+
if sport_var2 == 'NBA':
|
166 |
+
dk_roo_raw = nba_dk_sd_raw
|
167 |
+
fd_roo_raw = nba_fd_sd_raw
|
168 |
+
elif sport_var2 == 'NFL':
|
169 |
+
dk_roo_raw = nfl_dk_sd_raw
|
170 |
+
fd_roo_raw = nfl_fd_sd_raw
|
171 |
+
|
172 |
+
with col3:
|
173 |
+
slate_var2 = st.radio("Slate", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Auxiliary)'), key='slate_var2')
|
174 |
+
|
175 |
+
with col4:
|
176 |
+
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
177 |
+
|
178 |
+
if site_var2 == 'Draftkings':
|
179 |
+
if slate_var2 == 'Paydirt (Main)':
|
180 |
+
raw_baselines = dk_roo_raw
|
181 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
|
182 |
+
elif slate_var2 == 'Paydirt (Secondary)':
|
183 |
+
raw_baselines = dk_roo_raw
|
184 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
|
185 |
+
elif slate_var2 == 'Paydirt (Auxiliary)':
|
186 |
+
raw_baselines = dk_roo_raw
|
187 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
|
188 |
+
|
189 |
+
elif site_var2 == 'Fanduel':
|
190 |
+
if slate_var2 == 'Paydirt (Main)':
|
191 |
+
raw_baselines = fd_roo_raw
|
192 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1']
|
193 |
+
elif slate_var2 == 'Paydirt (Secondary)':
|
194 |
+
raw_baselines = fd_roo_raw
|
195 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2']
|
196 |
+
elif slate_var2 == 'Paydirt (Auxiliary)':
|
197 |
+
raw_baselines = fd_roo_raw
|
198 |
+
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
|
199 |
|
200 |
hold_container = st.empty()
|
201 |
|
|
|
236 |
)
|
237 |
|
238 |
with tab2:
|
239 |
+
with st.expander('Info and Filters'):
|
|
|
240 |
if st.button("Load/Reset Data", key='reset1'):
|
241 |
+
st.cache_data.clear()
|
242 |
+
nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines()
|
243 |
+
for key in st.session_state.keys():
|
244 |
+
del st.session_state[key]
|
245 |
+
sport_var1 = st.radio("What sport are you optimizing?", ('NBA', 'NFL'), key='sport_var1')
|
246 |
if sport_var1 == 'NBA':
|
247 |
dk_roo_raw = nba_dk_sd_raw
|
248 |
fd_roo_raw = nba_fd_sd_raw
|
|
|
274 |
st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen")
|
275 |
raw_baselines = fd_roo_raw
|
276 |
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3']
|
277 |
+
|
278 |
contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1')
|
279 |
lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1')
|
280 |
lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2')
|
|
|
381 |
flex_proj['Own'] = display_baselines['Own']
|
382 |
flex_proj['lock'] = display_baselines['lock']
|
383 |
flex_proj['roster'] = 'FLEX'
|
|
|
|
|
384 |
|
385 |
+
combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True)
|
386 |
+
|
387 |
+
display_container = st.empty()
|
388 |
+
display_dl_container = st.empty()
|
389 |
+
optimize_container = st.empty()
|
390 |
+
download_container = st.empty()
|
391 |
+
freq_container = st.empty()
|
392 |
+
if st.button('Optimize'):
|
393 |
+
for key in st.session_state.keys():
|
394 |
+
del st.session_state[key]
|
395 |
+
max_proj = 1000
|
396 |
+
max_own = 1000
|
397 |
+
total_proj = 0
|
398 |
+
total_own = 0
|
399 |
display_container = st.empty()
|
400 |
display_dl_container = st.empty()
|
401 |
optimize_container = st.empty()
|
402 |
download_container = st.empty()
|
403 |
freq_container = st.empty()
|
404 |
+
lineup_display = []
|
405 |
+
check_list = []
|
406 |
+
lineups = []
|
407 |
+
portfolio = pd.DataFrame()
|
408 |
+
x = 1
|
409 |
+
|
410 |
+
with st.spinner('Wait for it...'):
|
411 |
+
with optimize_container:
|
412 |
+
|
413 |
+
while x <= linenum_var1:
|
414 |
+
sorted_lineup = []
|
415 |
+
p_used = []
|
416 |
+
|
417 |
+
raw_proj_file = combo_file
|
418 |
+
raw_flex_file = raw_proj_file.dropna(how='all')
|
419 |
+
raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0]
|
420 |
+
flex_file = raw_flex_file
|
421 |
+
flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True)
|
422 |
+
flex_file['name_var'] = flex_file['Player']
|
423 |
+
flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var2), 1, 0)
|
424 |
+
flex_file = flex_file[~flex_file['Player'].isin(avoid_var1)]
|
425 |
+
flex_file['Player'] = np.where(flex_file['roster'] == 'CPT', flex_file['Player'] + ' - CPT', flex_file['Player'] + ' - FLEX')
|
426 |
+
player_ids = flex_file.index
|
427 |
+
|
428 |
+
overall_players = flex_file[['Player']]
|
429 |
+
overall_players['player_var_add'] = flex_file.index
|
430 |
+
overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str)
|
431 |
+
|
432 |
+
player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger)
|
433 |
+
total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize)
|
434 |
+
player_match = dict(zip(overall_players['player_var'], overall_players['Player']))
|
435 |
+
player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add']))
|
436 |
+
|
437 |
+
player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%']))
|
438 |
+
player_team = dict(zip(flex_file['Player'], flex_file['Team']))
|
439 |
+
player_pos = dict(zip(flex_file['Player'], flex_file['Position']))
|
440 |
+
player_sal = dict(zip(flex_file['Player'], flex_file['Salary']))
|
441 |
+
player_proj = dict(zip(flex_file['Player'], flex_file['Median']))
|
442 |
+
|
443 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
444 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
445 |
+
|
446 |
+
obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
447 |
+
obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
448 |
+
|
449 |
+
obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index}
|
450 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1
|
451 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1
|
452 |
+
|
453 |
+
if site_var1 == 'Draftkings':
|
454 |
|
455 |
+
for flex in flex_file['lock'].unique():
|
456 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
457 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
458 |
+
|
459 |
+
for flex in flex_file['roster'].unique():
|
460 |
+
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
461 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
462 |
+
|
463 |
+
for flex in flex_file['roster'].unique():
|
464 |
+
sub_idx = flex_file[flex_file['roster'] == "FLEX"].index
|
465 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
+
for playerid in player_ids:
|
468 |
+
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
|
469 |
+
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
|
470 |
+
|
471 |
+
elif site_var1 == 'Fanduel':
|
|
|
|
|
472 |
|
473 |
+
for flex in flex_file['lock'].unique():
|
474 |
+
sub_idx = flex_file[flex_file['lock'] == 1].index
|
475 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
476 |
|
477 |
+
for flex in flex_file['Position'].unique():
|
478 |
+
sub_idx = flex_file[flex_file['Position'] != "Var"].index
|
479 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
|
481 |
+
for flex in flex_file['roster'].unique():
|
482 |
+
sub_idx = flex_file[flex_file['roster'] == "CPT"].index
|
483 |
+
total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1
|
484 |
+
|
485 |
+
for playerid in player_ids:
|
486 |
+
total_score += pulp.lpSum([player_vars[i] for i in player_ids if
|
487 |
+
(flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1
|
488 |
+
|
489 |
+
player_count = []
|
490 |
+
player_trim = []
|
491 |
+
lineup_list = []
|
492 |
+
|
493 |
+
if contest_var1 == 'Cash':
|
494 |
+
obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index}
|
495 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
496 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001
|
497 |
+
elif contest_var1 != 'Cash':
|
498 |
+
obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index}
|
499 |
+
total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index])
|
500 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01
|
501 |
+
if trim_var1 == 1:
|
502 |
+
total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001
|
503 |
+
|
504 |
+
total_score.solve()
|
505 |
+
for v in total_score.variables():
|
506 |
+
if v.varValue > 0:
|
507 |
+
lineup_list.append(v.name)
|
508 |
+
df = pd.DataFrame(lineup_list)
|
509 |
+
df['Names'] = df[0].map(player_match)
|
510 |
+
df['Cost'] = df['Names'].map(player_sal)
|
511 |
+
df['Proj'] = df['Names'].map(player_proj)
|
512 |
+
df['Own'] = df['Names'].map(player_own)
|
513 |
+
total_cost = sum(df['Cost'])
|
514 |
+
total_own = sum(df['Own'])
|
515 |
+
total_proj = sum(df['Proj'])
|
516 |
+
lineup_raw = pd.DataFrame(lineup_list)
|
517 |
+
lineup_raw['Names'] = lineup_raw[0].map(player_match)
|
518 |
+
lineup_raw['value'] = lineup_raw[0].map(player_index_match)
|
519 |
+
lineup_final = lineup_raw.sort_values(by=['value'])
|
520 |
+
del lineup_final[lineup_final.columns[0]]
|
521 |
+
del lineup_final[lineup_final.columns[1]]
|
522 |
+
lineup_final['Team'] = lineup_final['Names'].map(player_team)
|
523 |
+
lineup_final['Position'] = lineup_final['Names'].map(player_pos)
|
524 |
+
lineup_final['Salary'] = lineup_final['Names'].map(player_sal)
|
525 |
+
lineup_final['Proj'] = lineup_final['Names'].map(player_proj)
|
526 |
+
lineup_final['Own'] = lineup_final['Names'].map(player_own)
|
527 |
+
lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0)
|
528 |
+
lineup_final = lineup_final.reset_index(drop=True)
|
529 |
+
|
530 |
+
max_proj = total_proj
|
531 |
+
max_own = total_own
|
532 |
+
|
533 |
if site_var1 == 'Draftkings':
|
534 |
+
if len(lineup_final) == 7:
|
535 |
+
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
|
536 |
+
|
537 |
+
port_display['Cost'] = total_cost
|
538 |
+
port_display['Proj'] = total_proj
|
539 |
+
port_display['Own'] = total_own
|
540 |
+
st.table(port_display)
|
541 |
+
|
542 |
+
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
|
543 |
elif site_var1 == 'Fanduel':
|
544 |
+
if len(lineup_final) == 6:
|
545 |
+
port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1))
|
546 |
+
|
547 |
+
port_display['Cost'] = total_cost
|
548 |
+
port_display['Proj'] = total_proj
|
549 |
+
port_display['Own'] = total_own
|
550 |
+
st.table(port_display)
|
|
|
551 |
|
552 |
+
portfolio = pd.concat([portfolio, port_display], ignore_index = True)
|
553 |
+
|
554 |
+
x += 1
|
555 |
+
|
556 |
+
if site_var1 == 'Draftkings':
|
557 |
+
portfolio.rename(columns={0: "CPT", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4", 5: "FLEX5"}, inplace = True)
|
558 |
+
elif site_var1 == 'Fanduel':
|
559 |
+
portfolio.rename(columns={0: "MVP", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4"}, inplace = True)
|
560 |
+
portfolio = portfolio.dropna()
|
561 |
+
portfolio = portfolio.reset_index()
|
562 |
+
portfolio['Lineup_num'] = portfolio['index'] + 1
|
563 |
+
portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True)
|
564 |
+
portfolio = portfolio.set_index('Lineup')
|
565 |
+
portfolio = portfolio.drop(columns=['index'])
|
566 |
+
st.session_state.portfolio = portfolio.drop_duplicates()
|
567 |
+
|
568 |
+
final_outcomes = portfolio
|
569 |
+
st.session_state.final_outcomes = portfolio
|
570 |
+
|
571 |
+
player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:6].values, return_counts=True)),
|
572 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
573 |
+
player_freq['Freq'] = player_freq['Freq'].astype(int)
|
574 |
+
player_freq['Position'] = player_freq['Player'].map(player_pos)
|
575 |
+
player_freq['Salary'] = player_freq['Player'].map(player_sal)
|
576 |
+
player_freq['Proj Own'] = player_freq['Player'].map(player_own) / 100
|
577 |
+
player_freq['Exposure'] = player_freq['Freq']/(linenum_var1)
|
578 |
+
player_freq['Team'] = player_freq['Player'].map(player_team)
|
579 |
+
|
580 |
+
final_outcomes_export = pd.DataFrame()
|
581 |
+
split_portfolio = pd.DataFrame()
|
582 |
+
|
583 |
+
if site_var1 == 'Draftkings':
|
584 |
|
585 |
+
split_portfolio[['CPT', 'CPT_ID']] = final_outcomes.CPT.str.split("-", n=1, expand = True)
|
586 |
+
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
|
587 |
+
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
|
588 |
+
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
|
589 |
+
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
|
590 |
+
split_portfolio[['FLEX5', 'FLEX5_ID']] = final_outcomes.FLEX5.str.split("-", n=1, expand = True)
|
591 |
+
|
592 |
+
split_portfolio['CPT'] = split_portfolio['CPT'].str.strip()
|
593 |
+
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
|
594 |
+
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
|
595 |
+
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
|
596 |
+
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
|
597 |
+
split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip()
|
598 |
|
599 |
+
final_outcomes_export['CPT'] = split_portfolio['CPT']
|
600 |
+
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
|
601 |
+
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
|
602 |
+
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
|
603 |
+
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
|
604 |
+
final_outcomes_export['FLEX5'] = split_portfolio['FLEX5']
|
605 |
|
606 |
+
if sport_var1 == 'NFL':
|
607 |
+
final_outcomes_export['CPT'].replace(nfl_dk_id_dict, inplace=True)
|
608 |
+
final_outcomes_export['FLEX1'].replace(nfl_dk_id_dict, inplace=True)
|
609 |
+
final_outcomes_export['FLEX2'].replace(nfl_dk_id_dict, inplace=True)
|
610 |
+
final_outcomes_export['FLEX3'].replace(nfl_dk_id_dict, inplace=True)
|
611 |
+
final_outcomes_export['FLEX4'].replace(nfl_dk_id_dict, inplace=True)
|
612 |
+
final_outcomes_export['FLEX5'].replace(nfl_dk_id_dict, inplace=True)
|
613 |
+
elif sport_var1 == 'NBA':
|
614 |
+
final_outcomes_export['CPT'].replace(nba_dk_id_dict, inplace=True)
|
615 |
+
final_outcomes_export['FLEX1'].replace(nba_dk_id_dict, inplace=True)
|
616 |
+
final_outcomes_export['FLEX2'].replace(nba_dk_id_dict, inplace=True)
|
617 |
+
final_outcomes_export['FLEX3'].replace(nba_dk_id_dict, inplace=True)
|
618 |
+
final_outcomes_export['FLEX4'].replace(nba_dk_id_dict, inplace=True)
|
619 |
+
final_outcomes_export['FLEX5'].replace(nba_dk_id_dict, inplace=True)
|
620 |
+
final_outcomes_export['Salary'] = final_outcomes['Cost']
|
621 |
+
final_outcomes_export['Own'] = final_outcomes['Own']
|
622 |
+
final_outcomes_export['Proj'] = final_outcomes['Proj']
|
623 |
+
|
624 |
+
st.session_state.final_outcomes_export = final_outcomes_export.copy()
|
625 |
+
|
626 |
+
elif site_var1 == 'Fanduel':
|
627 |
+
|
628 |
+
split_portfolio[['MVP', 'CPT_ID']] = final_outcomes.MVP.str.split("-", n=1, expand = True)
|
629 |
+
split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True)
|
630 |
+
split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True)
|
631 |
+
split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True)
|
632 |
+
split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True)
|
633 |
+
|
634 |
+
split_portfolio['MVP'] = split_portfolio['MVP'].str.strip()
|
635 |
+
split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip()
|
636 |
+
split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip()
|
637 |
+
split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip()
|
638 |
+
split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip()
|
639 |
+
|
640 |
+
final_outcomes_export['MVP'] = split_portfolio['MVP']
|
641 |
+
final_outcomes_export['FLEX1'] = split_portfolio['FLEX1']
|
642 |
+
final_outcomes_export['FLEX2'] = split_portfolio['FLEX2']
|
643 |
+
final_outcomes_export['FLEX3'] = split_portfolio['FLEX3']
|
644 |
+
final_outcomes_export['FLEX4'] = split_portfolio['FLEX4']
|
645 |
+
|
646 |
+
if sport_var1 == 'NFL':
|
647 |
+
final_outcomes_export['MVP'].replace(nfl_fd_id_dict, inplace=True)
|
648 |
+
final_outcomes_export['FLEX1'].replace(nfl_fd_id_dict, inplace=True)
|
649 |
+
final_outcomes_export['FLEX2'].replace(nfl_fd_id_dict, inplace=True)
|
650 |
+
final_outcomes_export['FLEX3'].replace(nfl_fd_id_dict, inplace=True)
|
651 |
+
final_outcomes_export['FLEX4'].replace(nfl_fd_id_dict, inplace=True)
|
652 |
+
elif sport_var1 == 'NBA':
|
653 |
+
final_outcomes_export['MVP'].replace(nba_fd_id_dict, inplace=True)
|
654 |
+
final_outcomes_export['FLEX1'].replace(nba_fd_id_dict, inplace=True)
|
655 |
+
final_outcomes_export['FLEX2'].replace(nba_fd_id_dict, inplace=True)
|
656 |
+
final_outcomes_export['FLEX3'].replace(nba_fd_id_dict, inplace=True)
|
657 |
+
final_outcomes_export['FLEX4'].replace(nba_fd_id_dict, inplace=True)
|
658 |
+
final_outcomes_export['Salary'] = final_outcomes['Cost']
|
659 |
+
final_outcomes_export['Own'] = final_outcomes['Own']
|
660 |
+
final_outcomes_export['Proj'] = final_outcomes['Proj']
|
661 |
+
|
662 |
+
st.session_state.FD_final_outcomes_export = final_outcomes_export.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
|
664 |
+
st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']]
|
665 |
+
with display_container:
|
666 |
+
display_container = st.empty()
|
667 |
+
if 'display_baselines' in st.session_state:
|
668 |
+
st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
669 |
+
|
670 |
+
with display_dl_container:
|
671 |
+
display_dl_container = st.empty()
|
672 |
+
if 'export_baselines' in st.session_state:
|
|
|
|
|
|
|
673 |
st.download_button(
|
674 |
+
label="Export Projections",
|
675 |
+
data=convert_df_to_csv(st.session_state.export_baselines),
|
676 |
+
file_name='showdown_proj_export.csv',
|
677 |
mime='text/csv',
|
678 |
+
)
|
679 |
+
|
680 |
+
with optimize_container:
|
681 |
+
optimize_container = st.empty()
|
682 |
+
if 'final_outcomes' in st.session_state:
|
683 |
+
st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
684 |
+
|
685 |
+
with download_container:
|
686 |
+
download_container = st.empty()
|
687 |
+
if site_var1 == 'Draftkings':
|
688 |
+
if 'final_outcomes_export' in st.session_state:
|
689 |
+
st.download_button(
|
690 |
+
label="Export Optimals",
|
691 |
+
data=convert_df_to_csv(st.session_state.final_outcomes_export),
|
692 |
+
file_name='NFL_optimals_export.csv',
|
693 |
+
mime='text/csv',
|
694 |
+
)
|
695 |
+
elif site_var1 == 'Fanduel':
|
696 |
+
if 'FD_final_outcomes_export' in st.session_state:
|
697 |
+
st.download_button(
|
698 |
+
label="Export Optimals",
|
699 |
+
data=convert_df_to_csv(st.session_state.FD_final_outcomes_export),
|
700 |
+
file_name='FD_NFL_optimals_export.csv',
|
701 |
+
mime='text/csv',
|
702 |
+
)
|
703 |
+
|
704 |
+
with freq_container:
|
705 |
+
freq_container = st.empty()
|
706 |
+
if 'player_freq' in st.session_state:
|
707 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)
|
708 |
+
|