import pulp import numpy as np import pandas as pd import streamlit as st import pymongo from itertools import combinations import time @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) nba_db = client["NBA_DFS"] nfl_db = client["NFL_Database"] return nba_db, nfl_db st.set_page_config(layout="wide") nba_db, nfl_db = init_conn() wrong_acro = ['WSH', 'AZ'] right_acro = ['WAS', 'ARI'] game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'} team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}', '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'} nfl_player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}', '4x%': '{:.2%}','GPP%': '{:.2%}'} nba_player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}','GPP%': '{:.2%}'} expose_format = {'Proj Own': '{:.2%}','Exposure': '{:.2%}'} all_dk_player_projections = st.secrets["NFL_data"] st.markdown(""" """, unsafe_allow_html=True) @st.cache_resource(ttl=60) def init_baselines(): collection = nba_db["Player_SD_Range_Of_Outcomes"] cursor = collection.find() raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']] raw_display = raw_display.loc[raw_display['Median'] > 0] raw_display = raw_display.sort_values(by='Median', ascending=False) nba_dk_sd_raw = raw_display[raw_display['site'] == 'Draftkings'] nba_fd_sd_raw = raw_display[raw_display['site'] == 'Fanduel'] try: collection = nfl_db["DK_SD_NFL_ROO"] cursor = collection.find() raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] raw_display = raw_display.loc[raw_display['Median'] > 0] raw_display = raw_display.apply(pd.to_numeric, errors='ignore') nfl_dk_sd_raw = raw_display.sort_values(by='Median', ascending=False) except: nfl_dk_sd_raw = pd.DataFrame() try: collection = nfl_db["FD_SD_NFL_ROO"] cursor = collection.find() raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] raw_display = raw_display.loc[raw_display['Median'] > 0] raw_display = raw_display.apply(pd.to_numeric, errors='ignore') nfl_fd_sd_raw = raw_display.sort_values(by='Median', ascending=False) except: nfl_fd_sd_raw = pd.DataFrame() try: nba_timestamp = nba_dk_sd_raw['timestamp'].values[0] except: nba_timestamp = nba_fd_sd_raw['timestamp'].values[0] try: try: nfl_dk_timestamp = nfl_dk_sd_raw['timestamp'].values[0] except: nfl_dk_timestamp = nfl_fd_sd_raw['timestamp'].values[0] except: try: nfl_dk_timestamp = time.time() except: nfl_dk_timestamp = time.time() try: nba_dk_id_dict = dict(zip(nba_dk_sd_raw['Player'], nba_dk_sd_raw['player_id'])) nfl_dk_id_dict = dict(zip(nfl_dk_sd_raw['Player'], nfl_dk_sd_raw['player_id'])) nba_fd_id_dict = dict(zip(nba_fd_sd_raw['Player'], nba_fd_sd_raw['player_id'])) nfl_fd_id_dict = dict(zip(nfl_fd_sd_raw['Player'], nfl_fd_sd_raw['player_id'])) except: nba_dk_id_dict = dict(zip(nba_dk_sd_raw['Player'], nba_dk_sd_raw['player_id'])) nfl_dk_id_dict = dict() nba_fd_id_dict = dict(zip(nba_fd_sd_raw['Player'], nba_fd_sd_raw['player_id'])) nfl_fd_id_dict = dict() return nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines() @st.cache_data def convert_df_to_csv(df): return df.to_csv().encode('utf-8') tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimizer']) with tab1: with st.expander('Info and Filters'): if st.button("Load/Reset Data", key='reset2'): st.cache_data.clear() nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines() info_container = st.container() with info_container: st.info("Simple view is better for mobile and shows just the most valuable stats, Advanced view is better for desktop and shows all stats and thresholds") options_container = st.container() with options_container: col1, col2, col3, col4 = st.columns(4) with col1: view_var2 = st.radio("View Type", ("Simple", "Advanced"), key='view_var2') with col2: sport_var2 = st.radio("Sport", ('NBA', 'NFL'), key='sport_var2') if sport_var2 == 'NBA': dk_roo_raw = nba_dk_sd_raw fd_roo_raw = nba_fd_sd_raw elif sport_var2 == 'NFL': dk_roo_raw = nfl_dk_sd_raw fd_roo_raw = nfl_fd_sd_raw with col3: slate_var2 = st.radio("Slate", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Auxiliary)'), key='slate_var2') with col4: site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2') if site_var2 == 'Draftkings': if slate_var2 == 'Paydirt (Main)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1'] elif slate_var2 == 'Paydirt (Secondary)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2'] elif slate_var2 == 'Paydirt (Auxiliary)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3'] elif site_var2 == 'Fanduel': if slate_var2 == 'Paydirt (Main)': raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1'] elif slate_var2 == 'Paydirt (Secondary)': raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2'] elif slate_var2 == 'Paydirt (Auxiliary)': raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3'] hold_container = st.empty() if sport_var2 == 'NBA': if view_var2 == 'Simple': display_Proj = raw_baselines[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']] display_Proj = display_Proj.drop_duplicates(subset=['Player']) display_Proj = display_Proj.set_index('Player') elif view_var2 == 'Advanced': display_Proj = raw_baselines[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_id']] display_Proj = display_Proj.drop_duplicates(subset=['Player']) display_Proj = display_Proj.set_index('Player') elif sport_var2 == 'NFL': if view_var2 == 'Simple': display_Proj = raw_baselines[['Player', 'Position', 'Salary', 'Median', '20+%', 'Own']] display_Proj = display_Proj.drop_duplicates(subset=['Player']) display_Proj = display_Proj.set_index('Player') elif view_var2 == 'Advanced': display_Proj = raw_baselines[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small_Field_Own', 'Large_Field_Own', 'Cash_Field_Own', 'CPT_Own', 'LevX', 'version', 'slate', 'timestamp', 'player_id', 'site']] display_Proj = display_Proj.drop_duplicates(subset=['Player']) display_Proj = display_Proj.set_index('Player') display_Proj = display_Proj.sort_values(by='Median', ascending=False) with hold_container: hold_container = st.empty() if sport_var2 == 'NBA': st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nba_player_roo_format, precision=2), height=1000, use_container_width = True) elif sport_var2 == 'NFL': st.dataframe(display_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(nfl_player_roo_format, precision=2), height=1000, use_container_width = True) st.download_button( label="Export Tables", data=convert_df_to_csv(raw_baselines), file_name='NFL_SD_export.csv', mime='text/csv', ) with tab2: with st.expander('Info and Filters'): if st.button("Load/Reset Data", key='reset1'): st.cache_data.clear() nba_dk_sd_raw, nba_fd_sd_raw, nfl_dk_sd_raw, nfl_fd_sd_raw, nba_timestamp, nfl_dk_timestamp, nba_dk_id_dict, nfl_dk_id_dict, nba_fd_id_dict, nfl_fd_id_dict = init_baselines() for key in st.session_state.keys(): del st.session_state[key] sport_var1 = st.radio("What sport are you optimizing?", ('NBA', 'NFL'), key='sport_var1') if sport_var1 == 'NBA': dk_roo_raw = nba_dk_sd_raw fd_roo_raw = nba_fd_sd_raw elif sport_var1 == 'NFL': dk_roo_raw = nfl_dk_sd_raw fd_roo_raw = nfl_fd_sd_raw slate_var1 = st.radio("Which data are you loading?", ('Paydirt (Main)', 'Paydirt (Secondary)', 'Paydirt (Auxiliary)'), key='slate_var1') site_var1 = st.selectbox("What site is the showdown on?", ('Draftkings', 'Fanduel'), key='site_var1') if site_var1 == 'Draftkings': if slate_var1 == 'Paydirt (Main)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1'] elif slate_var1 == 'Paydirt (Secondary)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2'] elif slate_var1 == 'Paydirt (Auxiliary)': raw_baselines = dk_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3'] elif site_var1 == 'Fanduel': if slate_var1 == 'Paydirt (Main)': st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen") raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #1'] elif slate_var1 == 'Paydirt (Secondary)': st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen") raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #2'] elif slate_var1 == 'Paydirt (Auxiliary)': st.info("Showdown on Fanduel sucks, you should not do that, but I understand degen's gotta degen") raw_baselines = fd_roo_raw raw_baselines = raw_baselines[raw_baselines['slate'] == 'Showdown #3'] contest_var1 = st.selectbox("What contest type are you optimizing for?", ('Cash', 'Small Field GPP', 'Large Field GPP'), key='contest_var1') lock_var1 = st.multiselect("Are there any players you want to use in all lineups in the CAPTAIN (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var1') lock_var2 = st.multiselect("Are there any players you want to use in all lineups in the FLEX (Lock Button)?", options = raw_baselines['Player'].unique(), key='lock_var2') avoid_var1 = st.multiselect("Are there any players you want to remove from the pool (Drop Button)?", options = raw_baselines['Player'].unique(), key='avoid_var1') trim_choice1 = st.selectbox("Allow overowned lineups?", options = ['Yes', 'No']) linenum_var1 = st.number_input("How many lineups would you like to produce?", min_value = 1, max_value = 300, value = 20, step = 1, key='linenum_var1') if trim_choice1 == 'Yes': trim_var1 = 0 elif trim_choice1 == 'No': trim_var1 = 1 if site_var1 == 'Draftkings': min_sal1 = st.number_input('Min Salary', min_value = 35000, max_value = 49900, value = 49000, step = 100, key='min_sal1') max_sal1 = st.number_input('Max Salary', min_value = 35000, max_value = 50000, value = 50000, step = 100, key='max_sal1') elif site_var1 == 'Fanduel': min_sal1 = st.number_input('Min Salary', min_value = 45000, max_value = 59900, value = 59000, step = 100, key='min_sal1') max_sal1 = st.number_input('Max Salary', min_value = 45000, max_value = 60000, value = 60000, step = 100, key='max_sal1') if contest_var1 == 'Small Field GPP': ownframe = raw_baselines.copy() if sport_var1 == 'NBA': ownframe['Own'] = ownframe['Small_Own'] elif sport_var1 == 'NFL': ownframe['Own'] = ownframe['Small_Field_Own'] elif contest_var1 == 'Large Field GPP': ownframe = raw_baselines.copy() if sport_var1 == 'NBA': ownframe['Own'] = ownframe['Large_Own'] elif sport_var1 == 'NFL': ownframe['Own'] = ownframe['Large_Field_Own'] elif contest_var1 == 'Cash': ownframe = raw_baselines.copy() if sport_var1 == 'NBA': ownframe['Own'] = ownframe['Cash_Own'] elif sport_var1 == 'NFL': ownframe['Own'] = ownframe['Cash_Field_Own'] export_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'CPT_Own', 'player_id']] export_baselines['CPT_Proj'] = export_baselines['Median'] * 1.5 if sport_var1 == 'NBA': export_baselines['CPT_Salary'] = export_baselines['Salary'] * 1.5 elif sport_var1 == 'NFL': export_baselines['CPT_Salary'] = export_baselines['Salary'] export_baselines['salary'] = export_baselines['Salary'] / 1.5 export_baselines['ID'] = export_baselines['player_id'] display_baselines = ownframe[['Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', 'Own', 'CPT_Own']] display_baselines = display_baselines.sort_values(by='Median', ascending=False) display_baselines['cpt_lock'] = np.where(display_baselines['Player'].isin(lock_var1), 1, 0) display_baselines['lock'] = np.where(display_baselines['Player'].isin(lock_var2), 1, 0) display_baselines = display_baselines.drop_duplicates(subset=['Player']) st.session_state.display_baselines = display_baselines.copy() st.session_state.export_baselines = export_baselines.copy() index_check = pd.DataFrame() flex_proj = pd.DataFrame() cpt_proj = pd.DataFrame() if site_var1 == 'Draftkings': cpt_proj['Player'] = display_baselines['Player'] if sport_var1 == 'NBA': cpt_proj['Salary'] = display_baselines['Salary'] * 1.5 elif sport_var1 == 'NFL': cpt_proj['Salary'] = display_baselines['Salary'] cpt_proj['Position'] = display_baselines['Position'] cpt_proj['Team'] = display_baselines['Team'] cpt_proj['Opp'] = display_baselines['Opp'] cpt_proj['Median'] = display_baselines['Median'] * 1.5 cpt_proj['Own'] = display_baselines['CPT_Own'] cpt_proj['lock'] = display_baselines['cpt_lock'] cpt_proj['roster'] = 'CPT' if len(lock_var1) > 0: cpt_proj = cpt_proj[cpt_proj['lock'] == 1] if len(lock_var2) > 0: cpt_proj = cpt_proj[~cpt_proj['Player'].isin(lock_var2)] flex_proj['Player'] = display_baselines['Player'] if sport_var1 == 'NBA': flex_proj['Salary'] = display_baselines['Salary'] elif sport_var1 == 'NFL': flex_proj['Salary'] = display_baselines['Salary'] / 1.5 flex_proj['Position'] = display_baselines['Position'] flex_proj['Team'] = display_baselines['Team'] flex_proj['Opp'] = display_baselines['Opp'] flex_proj['Median'] = display_baselines['Median'] flex_proj['Own'] = display_baselines['Own'] flex_proj['lock'] = display_baselines['lock'] flex_proj['roster'] = 'FLEX' elif site_var1 == 'Fanduel': cpt_proj['Player'] = display_baselines['Player'] cpt_proj['Salary'] = display_baselines['Salary'] cpt_proj['Position'] = display_baselines['Position'] cpt_proj['Team'] = display_baselines['Team'] cpt_proj['Opp'] = display_baselines['Opp'] cpt_proj['Median'] = display_baselines['Median'] * 1.5 cpt_proj['Own'] = display_baselines['CPT Own'] * .75 cpt_proj['lock'] = display_baselines['cpt_lock'] cpt_proj['roster'] = 'CPT' flex_proj['Player'] = display_baselines['Player'] flex_proj['Salary'] = display_baselines['Salary'] flex_proj['Position'] = display_baselines['Position'] flex_proj['Team'] = display_baselines['Team'] flex_proj['Opp'] = display_baselines['Opp'] flex_proj['Median'] = display_baselines['Median'] flex_proj['Own'] = display_baselines['Own'] flex_proj['lock'] = display_baselines['lock'] flex_proj['roster'] = 'FLEX' combo_file = pd.concat([cpt_proj, flex_proj], ignore_index=True) display_container = st.empty() display_dl_container = st.empty() optimize_container = st.empty() download_container = st.empty() freq_container = st.empty() if st.button('Optimize'): for key in st.session_state.keys(): del st.session_state[key] max_proj = 1000 max_own = 1000 total_proj = 0 total_own = 0 display_container = st.empty() display_dl_container = st.empty() optimize_container = st.empty() download_container = st.empty() freq_container = st.empty() lineup_display = [] check_list = [] lineups = [] portfolio = pd.DataFrame() x = 1 with st.spinner('Wait for it...'): with optimize_container: while x <= linenum_var1: sorted_lineup = [] p_used = [] raw_proj_file = combo_file raw_flex_file = raw_proj_file.dropna(how='all') raw_flex_file = raw_flex_file.loc[raw_flex_file['Median'] > 0] flex_file = raw_flex_file flex_file.rename(columns={"Own": "Proj DK Own%"}, inplace = True) flex_file['name_var'] = flex_file['Player'] flex_file['lock'] = np.where(flex_file['Player'].isin(lock_var2), 1, 0) flex_file = flex_file[~flex_file['Player'].isin(avoid_var1)] flex_file['Player'] = np.where(flex_file['roster'] == 'CPT', flex_file['Player'] + ' - CPT', flex_file['Player'] + ' - FLEX') player_ids = flex_file.index overall_players = flex_file[['Player']] overall_players['player_var_add'] = flex_file.index overall_players['player_var'] = 'player_vars_' + overall_players['player_var_add'].astype(str) player_vars = pulp.LpVariable.dicts("player_vars", flex_file.index, 0, 1, pulp.LpInteger) total_score = pulp.LpProblem("Fantasy_Points_Problem", pulp.LpMaximize) player_match = dict(zip(overall_players['player_var'], overall_players['Player'])) player_index_match = dict(zip(overall_players['player_var'], overall_players['player_var_add'])) player_own = dict(zip(flex_file['Player'], flex_file['Proj DK Own%'])) player_team = dict(zip(flex_file['Player'], flex_file['Team'])) player_pos = dict(zip(flex_file['Player'], flex_file['Position'])) player_sal = dict(zip(flex_file['Player'], flex_file['Salary'])) player_proj = dict(zip(flex_file['Player'], flex_file['Median'])) obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index} total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) obj_points_max = {idx: (flex_file['Median'][idx]) for idx in flex_file.index} obj_own_max = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index} obj_salary = {idx: (flex_file['Salary'][idx]) for idx in flex_file.index} total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) <= max_sal1 total_score += pulp.lpSum([player_vars[idx]*obj_salary[idx] for idx in flex_file.index]) >= min_sal1 if site_var1 == 'Draftkings': for flex in flex_file['lock'].unique(): sub_idx = flex_file[flex_file['lock'] == 1].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2) for flex in flex_file['roster'].unique(): sub_idx = flex_file[flex_file['roster'] == "CPT"].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1 for flex in flex_file['roster'].unique(): sub_idx = flex_file[flex_file['roster'] == "FLEX"].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5 for playerid in player_ids: total_score += pulp.lpSum([player_vars[i] for i in player_ids if (flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1 elif site_var1 == 'Fanduel': for flex in flex_file['lock'].unique(): sub_idx = flex_file[flex_file['lock'] == 1].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == len(lock_var2) for flex in flex_file['Position'].unique(): sub_idx = flex_file[flex_file['Position'] != "Var"].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 5 for flex in flex_file['roster'].unique(): sub_idx = flex_file[flex_file['roster'] == "CPT"].index total_score += pulp.lpSum([player_vars[idx] for idx in sub_idx]) == 1 for playerid in player_ids: total_score += pulp.lpSum([player_vars[i] for i in player_ids if (flex_file['name_var'][i] == flex_file['name_var'][playerid])]) <= 1 player_count = [] player_trim = [] lineup_list = [] if contest_var1 == 'Cash': obj_points = {idx: (flex_file['Proj DK Own%'][idx]) for idx in flex_file.index} total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_own - .001 elif contest_var1 != 'Cash': obj_points = {idx: (flex_file['Median'][idx]) for idx in flex_file.index} total_score += sum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) total_score += pulp.lpSum([player_vars[idx]*obj_points[idx] for idx in flex_file.index]) <= max_proj - .01 if trim_var1 == 1: total_score += pulp.lpSum([player_vars[idx]*obj_own_max[idx] for idx in flex_file.index]) <= max_own - .001 total_score.solve() for v in total_score.variables(): if v.varValue > 0: lineup_list.append(v.name) df = pd.DataFrame(lineup_list) df['Names'] = df[0].map(player_match) df['Cost'] = df['Names'].map(player_sal) df['Proj'] = df['Names'].map(player_proj) df['Own'] = df['Names'].map(player_own) total_cost = sum(df['Cost']) total_own = sum(df['Own']) total_proj = sum(df['Proj']) lineup_raw = pd.DataFrame(lineup_list) lineup_raw['Names'] = lineup_raw[0].map(player_match) lineup_raw['value'] = lineup_raw[0].map(player_index_match) lineup_final = lineup_raw.sort_values(by=['value']) del lineup_final[lineup_final.columns[0]] del lineup_final[lineup_final.columns[1]] lineup_final['Team'] = lineup_final['Names'].map(player_team) lineup_final['Position'] = lineup_final['Names'].map(player_pos) lineup_final['Salary'] = lineup_final['Names'].map(player_sal) lineup_final['Proj'] = lineup_final['Names'].map(player_proj) lineup_final['Own'] = lineup_final['Names'].map(player_own) lineup_final.loc['Column_Total'] = lineup_final.sum(numeric_only=True, axis=0) lineup_final = lineup_final.reset_index(drop=True) max_proj = total_proj max_own = total_own if site_var1 == 'Draftkings': if len(lineup_final) == 7: port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1)) port_display['Cost'] = total_cost port_display['Proj'] = total_proj port_display['Own'] = total_own st.table(port_display) portfolio = pd.concat([portfolio, port_display], ignore_index = True) elif site_var1 == 'Fanduel': if len(lineup_final) == 6: port_display = pd.DataFrame(lineup_final['Names'][:-1].values.reshape(1, -1)) port_display['Cost'] = total_cost port_display['Proj'] = total_proj port_display['Own'] = total_own st.table(port_display) portfolio = pd.concat([portfolio, port_display], ignore_index = True) x += 1 if site_var1 == 'Draftkings': portfolio.rename(columns={0: "CPT", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4", 5: "FLEX5"}, inplace = True) elif site_var1 == 'Fanduel': portfolio.rename(columns={0: "MVP", 1: "FLEX1", 2: "FLEX2", 3: "FLEX3", 4: "FLEX4"}, inplace = True) portfolio = portfolio.dropna() portfolio = portfolio.reset_index() portfolio['Lineup_num'] = portfolio['index'] + 1 portfolio.rename(columns={'Lineup_num': "Lineup"}, inplace = True) portfolio = portfolio.set_index('Lineup') portfolio = portfolio.drop(columns=['index']) st.session_state.portfolio = portfolio.drop_duplicates() final_outcomes = portfolio st.session_state.final_outcomes = portfolio player_freq = pd.DataFrame(np.column_stack(np.unique(st.session_state.portfolio.iloc[:,0:6].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) player_freq['Freq'] = player_freq['Freq'].astype(int) player_freq['Position'] = player_freq['Player'].map(player_pos) player_freq['Salary'] = player_freq['Player'].map(player_sal) player_freq['Proj Own'] = player_freq['Player'].map(player_own) / 100 player_freq['Exposure'] = player_freq['Freq']/(linenum_var1) player_freq['Team'] = player_freq['Player'].map(player_team) final_outcomes_export = pd.DataFrame() split_portfolio = pd.DataFrame() if site_var1 == 'Draftkings': split_portfolio[['CPT', 'CPT_ID']] = final_outcomes.CPT.str.split("-", n=1, expand = True) split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True) split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True) split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True) split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True) split_portfolio[['FLEX5', 'FLEX5_ID']] = final_outcomes.FLEX5.str.split("-", n=1, expand = True) split_portfolio['CPT'] = split_portfolio['CPT'].str.strip() split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip() split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip() split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip() split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip() split_portfolio['FLEX5'] = split_portfolio['FLEX5'].str.strip() final_outcomes_export['CPT'] = split_portfolio['CPT'] final_outcomes_export['FLEX1'] = split_portfolio['FLEX1'] final_outcomes_export['FLEX2'] = split_portfolio['FLEX2'] final_outcomes_export['FLEX3'] = split_portfolio['FLEX3'] final_outcomes_export['FLEX4'] = split_portfolio['FLEX4'] final_outcomes_export['FLEX5'] = split_portfolio['FLEX5'] if sport_var1 == 'NFL': final_outcomes_export['CPT'].replace(nfl_dk_id_dict, inplace=True) final_outcomes_export['FLEX1'].replace(nfl_dk_id_dict, inplace=True) final_outcomes_export['FLEX2'].replace(nfl_dk_id_dict, inplace=True) final_outcomes_export['FLEX3'].replace(nfl_dk_id_dict, inplace=True) final_outcomes_export['FLEX4'].replace(nfl_dk_id_dict, inplace=True) final_outcomes_export['FLEX5'].replace(nfl_dk_id_dict, inplace=True) elif sport_var1 == 'NBA': final_outcomes_export['CPT'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['FLEX1'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['FLEX2'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['FLEX3'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['FLEX4'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['FLEX5'].replace(nba_dk_id_dict, inplace=True) final_outcomes_export['Salary'] = final_outcomes['Cost'] final_outcomes_export['Own'] = final_outcomes['Own'] final_outcomes_export['Proj'] = final_outcomes['Proj'] st.session_state.final_outcomes_export = final_outcomes_export.copy() elif site_var1 == 'Fanduel': split_portfolio[['MVP', 'CPT_ID']] = final_outcomes.MVP.str.split("-", n=1, expand = True) split_portfolio[['FLEX1', 'FLEX1_ID']] = final_outcomes.FLEX1.str.split("-", n=1, expand = True) split_portfolio[['FLEX2', 'FLEX2_ID']] = final_outcomes.FLEX2.str.split("-", n=1, expand = True) split_portfolio[['FLEX3', 'FLEX3_ID']] = final_outcomes.FLEX3.str.split("-", n=1, expand = True) split_portfolio[['FLEX4', 'FLEX4_ID']] = final_outcomes.FLEX4.str.split("-", n=1, expand = True) split_portfolio['MVP'] = split_portfolio['MVP'].str.strip() split_portfolio['FLEX1'] = split_portfolio['FLEX1'].str.strip() split_portfolio['FLEX2'] = split_portfolio['FLEX2'].str.strip() split_portfolio['FLEX3'] = split_portfolio['FLEX3'].str.strip() split_portfolio['FLEX4'] = split_portfolio['FLEX4'].str.strip() final_outcomes_export['MVP'] = split_portfolio['MVP'] final_outcomes_export['FLEX1'] = split_portfolio['FLEX1'] final_outcomes_export['FLEX2'] = split_portfolio['FLEX2'] final_outcomes_export['FLEX3'] = split_portfolio['FLEX3'] final_outcomes_export['FLEX4'] = split_portfolio['FLEX4'] if sport_var1 == 'NFL': final_outcomes_export['MVP'].replace(nfl_fd_id_dict, inplace=True) final_outcomes_export['FLEX1'].replace(nfl_fd_id_dict, inplace=True) final_outcomes_export['FLEX2'].replace(nfl_fd_id_dict, inplace=True) final_outcomes_export['FLEX3'].replace(nfl_fd_id_dict, inplace=True) final_outcomes_export['FLEX4'].replace(nfl_fd_id_dict, inplace=True) elif sport_var1 == 'NBA': final_outcomes_export['MVP'].replace(nba_fd_id_dict, inplace=True) final_outcomes_export['FLEX1'].replace(nba_fd_id_dict, inplace=True) final_outcomes_export['FLEX2'].replace(nba_fd_id_dict, inplace=True) final_outcomes_export['FLEX3'].replace(nba_fd_id_dict, inplace=True) final_outcomes_export['FLEX4'].replace(nba_fd_id_dict, inplace=True) final_outcomes_export['Salary'] = final_outcomes['Cost'] final_outcomes_export['Own'] = final_outcomes['Own'] final_outcomes_export['Proj'] = final_outcomes['Proj'] st.session_state.FD_final_outcomes_export = final_outcomes_export.copy() st.session_state.player_freq = player_freq[['Player', 'Position', 'Team', 'Salary', 'Proj Own', 'Exposure']] with display_container: display_container = st.empty() if 'display_baselines' in st.session_state: st.dataframe(st.session_state.display_baselines.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) with display_dl_container: display_dl_container = st.empty() if 'export_baselines' in st.session_state: st.download_button( label="Export Projections", data=convert_df_to_csv(st.session_state.export_baselines), file_name='showdown_proj_export.csv', mime='text/csv', ) with optimize_container: optimize_container = st.empty() if 'final_outcomes' in st.session_state: st.dataframe(st.session_state.final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) with download_container: download_container = st.empty() if site_var1 == 'Draftkings': if 'final_outcomes_export' in st.session_state: st.download_button( label="Export Optimals", data=convert_df_to_csv(st.session_state.final_outcomes_export), file_name='NFL_optimals_export.csv', mime='text/csv', ) elif site_var1 == 'Fanduel': if 'FD_final_outcomes_export' in st.session_state: st.download_button( label="Export Optimals", data=convert_df_to_csv(st.session_state.FD_final_outcomes_export), file_name='FD_NFL_optimals_export.csv', mime='text/csv', ) with freq_container: freq_container = st.empty() if 'player_freq' in st.session_state: st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(expose_format, precision=2), use_container_width = True)