James McCool commited on
Commit
1acbaaa
·
1 Parent(s): 3a0d10d

Refactor app.py to remove 'over_adj' and 'under_adj' from 'Over%' and 'Under%' calculations, streamlining the prop percentage formulas. This change enhances the clarity of player projections by focusing on the weighted averages of 'Over', 'Trending Over', 'Imp Over', 'Under', 'Trending Under', and 'Imp Under', ensuring a more accurate analysis of prop outcomes.

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -295,10 +295,10 @@ with tab3:
295
  players_only['90%'] = overall_file.quantile(0.9, axis=1)
296
  players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
297
  players_only['Imp Over'] = players_only['Player'].map(over_dict)
298
- players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2) + players_only['over_adj']
299
  players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
300
  players_only['Imp Under'] = players_only['Player'].map(under_dict)
301
- players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2) + players_only['under_adj']
302
  players_only['Prop_avg'] = players_only['Prop'].mean() / 100
303
  players_only['prop_threshold'] = .10
304
  players_only = players_only[players_only['Mean_Outcome'] > 0]
 
295
  players_only['90%'] = overall_file.quantile(0.9, axis=1)
296
  players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
297
  players_only['Imp Over'] = players_only['Player'].map(over_dict)
298
+ players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
299
  players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
300
  players_only['Imp Under'] = players_only['Player'].map(under_dict)
301
+ players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
302
  players_only['Prop_avg'] = players_only['Prop'].mean() / 100
303
  players_only['prop_threshold'] = .10
304
  players_only = players_only[players_only['Mean_Outcome'] > 0]