Spaces:
Running
Running
James McCool
commited on
Commit
·
1acbaaa
1
Parent(s):
3a0d10d
Refactor app.py to remove 'over_adj' and 'under_adj' from 'Over%' and 'Under%' calculations, streamlining the prop percentage formulas. This change enhances the clarity of player projections by focusing on the weighted averages of 'Over', 'Trending Over', 'Imp Over', 'Under', 'Trending Under', and 'Imp Under', ensuring a more accurate analysis of prop outcomes.
Browse files
app.py
CHANGED
@@ -295,10 +295,10 @@ with tab3:
|
|
295 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
296 |
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
297 |
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
298 |
-
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
|
299 |
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
300 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
301 |
-
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
|
302 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
303 |
players_only['prop_threshold'] = .10
|
304 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
|
|
295 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
296 |
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
297 |
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
298 |
+
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
|
299 |
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
300 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
301 |
+
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
|
302 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
303 |
players_only['prop_threshold'] = .10
|
304 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|