James McCool
Enhance app.py by adding a new tab for Stack Type Statistics, which displays average statistics and counts for team stacks. Update existing tabs to include 'Avg Own' in dataframes and improve user feedback when simulation data is unavailable. Additionally, implement a download button for stack frequency data, enhancing data export functionality.
a95448c
raw
history blame
43 kB
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
percentages_format = {'Exposure': '{:.2%}'}
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
@st.cache_data(ttl = 600)
def init_DK_seed_frames(sharp_split):
collection = db["DK_NHL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'FLEX', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 599)
def init_FD_seed_frames(sharp_split):
collection = db["FD_NHL_seed_frame"]
cursor = collection.find().limit(sharp_split)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data(ttl = 599)
def init_baselines():
collection = db["Player_Level_ROO"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
load_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
load_display['STDev'] = load_display['Median'] / 3
DK_load_display = load_display[load_display['Site'] == 'Draftkings']
DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first')
dk_raw = DK_load_display.dropna(subset=['Median'])
dk_raw['Team'] = dk_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
FD_load_display = load_display[load_display['Site'] == 'Fanduel']
FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first')
fd_raw = FD_load_display.dropna(subset=['Median'])
fd_raw['Team'] = fd_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
teams_playing_count = len(dk_raw.Team.unique())
return dk_raw, fd_raw, teams_playing_count
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
@st.cache_data
def calculate_DK_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def calculate_FD_value_frequencies(np_array):
unique, counts = np.unique(np_array[:, :9], return_counts=True)
frequencies = counts / len(np_array) # Normalize by the number of rows
combined_array = np.column_stack((unique, frequencies))
return combined_array
@st.cache_data
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count):
SimVar = 1
Sim_Winners = []
fp_array = seed_frame.copy()
# Pre-vectorize functions
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
st.write('Simulating contest on frames')
while SimVar <= Sim_size:
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
# Calculate base projections
base_projections = np.sum(np.random.normal(
loc=vec_projection_map(fp_random[:, :-7]),
scale=vec_stdev_map(fp_random[:, :-7])),
axis=1)
# Apply 10% bonus for stacks of 5 or more based on the number of teams playing
stack_bonus = np.where(fp_random[:, 12] >= 5, base_projections * (0.05 * (teams_playing_count - 12)), 0)
final_projections = base_projections + stack_bonus
sample_arrays = np.c_[fp_random, final_projections]
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
Sim_Winners.append(best_lineup)
SimVar += 1
return Sim_Winners
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
if site_var1 == 'Draftkings':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = dk_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
elif site_var1 == 'Fanduel':
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
if team_var1 == 'Specific Teams':
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
elif team_var1 == 'Full Slate':
team_var2 = fd_raw.Team.values.tolist()
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
if stack_var1 == 'Specific Stack Sizes':
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
elif stack_var1 == 'Full Slate':
stack_var2 = [5, 4, 3, 2, 1, 0]
if st.button("Prepare data export", key='data_export'):
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
elif 'working_seed' not in st.session_state:
if site_var1 == 'Draftkings':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
raw_baselines = dk_raw
column_names = dk_columns
elif site_var1 == 'Fanduel':
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
data_export = st.session_state.working_seed.copy()
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NHL_optimals_export.csv',
mime='text/csv',
)
for key in st.session_state.keys():
del st.session_state[key]
with col2:
if st.button("Load Data", key='load_data'):
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
raw_baselines = dk_raw
column_names = dk_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
elif 'working_seed' not in st.session_state:
if slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
with st.container():
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
for key in st.session_state.keys():
del st.session_state[key]
DK_seed = init_DK_seed_frames(10000)
FD_seed = init_FD_seed_frames(10000)
dk_raw, fd_raw, teams_playing_count = init_baselines()
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
if contest_var1 == 'Small':
Contest_Size = 1000
elif contest_var1 == 'Medium':
Contest_Size = 5000
elif contest_var1 == 'Large':
Contest_Size = 10000
elif contest_var1 == 'Custom':
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
if strength_var1 == 'Not Very':
sharp_split = 500000
elif strength_var1 == 'Below Average':
sharp_split = 400000
elif strength_var1 == 'Average':
sharp_split = 300000
elif strength_var1 == 'Above Average':
sharp_split = 200000
elif strength_var1 == 'Very':
sharp_split = 100000
with col2:
if st.button("Run Contest Sim"):
if 'working_seed' in st.session_state:
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
else:
if sim_site_var1 == 'Draftkings':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
raw_baselines = dk_raw
column_names = dk_columns
elif sim_site_var1 == 'Fanduel':
if sim_slate_var1 == 'Main Slate':
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
raw_baselines = fd_raw
column_names = fd_columns
st.session_state.maps_dict = {
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
}
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
#st.table(Sim_Winner_Frame)
# Initial setup
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
# Type Casting
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
# Sorting
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
# Data Copying
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
# Data Copying
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
if sim_site_var1 == 'Draftkings':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
freq_working['Freq'] = freq_working['Freq'].astype(int)
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
freq_working['Exposure'] = freq_working['Freq']/(1000)
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.player_freq = freq_working.copy()
if sim_site_var1 == 'Draftkings':
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
center_working['Freq'] = center_working['Freq'].astype(int)
center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map'])
center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map'])
center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
center_working['Exposure'] = center_working['Freq']/(1000)
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.center_freq = center_working.copy()
if sim_site_var1 == 'Draftkings':
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:5].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
wing_working['Freq'] = wing_working['Freq'].astype(int)
wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
wing_working['Exposure'] = wing_working['Freq']/(1000)
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.wing_freq = wing_working.copy()
if sim_site_var1 == 'Draftkings':
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:7].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.dmen_freq = dmen_working.copy()
if sim_site_var1 == 'Draftkings':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
flex_working['Freq'] = flex_working['Freq'].astype(int)
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
flex_working['Exposure'] = flex_working['Freq']/(1000)
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.flex_freq = flex_working.copy()
if sim_site_var1 == 'Draftkings':
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
goalie_working['Freq'] = goalie_working['Freq'].astype(int)
goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map'])
goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map'])
goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
goalie_working['Exposure'] = goalie_working['Freq']/(1000)
goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map'])
st.session_state.goalie_freq = goalie_working.copy()
if sim_site_var1 == 'Draftkings':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
elif sim_site_var1 == 'Fanduel':
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
team_working['Freq'] = team_working['Freq'].astype(int)
team_working['Exposure'] = team_working['Freq']/(1000)
st.session_state.team_freq = team_working.copy()
with st.container():
if st.button("Reset Sim", key='reset_sim'):
for key in st.session_state.keys():
del st.session_state[key]
if 'player_freq' in st.session_state:
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
if player_split_var2 == 'Specific Players':
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
elif player_split_var2 == 'Full Players':
find_var2 = st.session_state.player_freq.Player.values.tolist()
if player_split_var2 == 'Specific Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
if player_split_var2 == 'Full Players':
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
if 'Sim_Winner_Display' in st.session_state:
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
if 'Sim_Winner_Export' in st.session_state:
st.download_button(
label="Export Full Frame",
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
file_name='MLB_consim_export.csv',
mime='text/csv',
)
tab1, tab2, tab3 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics', 'Stack Type Statistics'])
with tab1:
if 'Sim_Winner_Display' in st.session_state:
# Create a new dataframe with summary statistics
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
st.session_state.Sim_Winner_Display['salary'].min(),
st.session_state.Sim_Winner_Display['salary'].mean(),
st.session_state.Sim_Winner_Display['salary'].max(),
st.session_state.Sim_Winner_Display['salary'].std()
],
'Proj': [
st.session_state.Sim_Winner_Display['proj'].min(),
st.session_state.Sim_Winner_Display['proj'].mean(),
st.session_state.Sim_Winner_Display['proj'].max(),
st.session_state.Sim_Winner_Display['proj'].std()
],
'Own': [
st.session_state.Sim_Winner_Display['Own'].min(),
st.session_state.Sim_Winner_Display['Own'].mean(),
st.session_state.Sim_Winner_Display['Own'].max(),
st.session_state.Sim_Winner_Display['Own'].std()
],
'Fantasy': [
st.session_state.Sim_Winner_Display['Fantasy'].min(),
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
st.session_state.Sim_Winner_Display['Fantasy'].max(),
st.session_state.Sim_Winner_Display['Fantasy'].std()
],
'GPP_Proj': [
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Winning Frame Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}',
'Fantasy': '{:.2f}',
'GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
with tab2:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
# Count occurrences of each position in FLEX
flex_counts = flex_positions.value_counts()
# Calculate average statistics for each FLEX position
flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
flex_summary = pd.concat([flex_counts, flex_stats], axis=1)
flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
flex_summary = flex_summary.reset_index()
flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
# Display the summary dataframe
st.subheader("FLEX Position Statistics")
st.dataframe(flex_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with tab3:
if 'Sim_Winner_Display' in st.session_state:
# Apply position mapping to FLEX column
stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
# Calculate average statistics for each stack size
stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
'proj': 'mean',
'Own': 'mean',
'Fantasy': 'mean',
'GPP_Proj': 'mean'
})
# Combine counts and average statistics
stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
stack_summary = stack_summary.reset_index()
stack_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
# Display the summary dataframe
st.subheader("Stack Type Statistics")
st.dataframe(stack_summary.style.format({
'Count': '{:.0f}',
'Avg Proj': '{:.2f}',
'Avg Own': '{:.2f}',
'Avg Fantasy': '{:.2f}',
'Avg GPP_Proj': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
else:
st.write("Simulation data or position mapping not available.")
with st.container():
tab1, tab2, tab3, tab4, tab5, tab6, tab7, tab8 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures', 'Stack Exposures'])
with tab1:
if 'player_freq' in st.session_state:
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.player_freq.to_csv().encode('utf-8'),
file_name='player_freq_export.csv',
mime='text/csv',
key='overall'
)
with tab2:
if 'center_freq' in st.session_state:
st.dataframe(st.session_state.center_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.center_freq.to_csv().encode('utf-8'),
file_name='center_freq.csv',
mime='text/csv',
key='center'
)
with tab3:
if 'wing_freq' in st.session_state:
st.dataframe(st.session_state.wing_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.wing_freq.to_csv().encode('utf-8'),
file_name='wing_freq.csv',
mime='text/csv',
key='wing'
)
with tab4:
if 'dmen_freq' in st.session_state:
st.dataframe(st.session_state.dmen_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.dmen_freq.to_csv().encode('utf-8'),
file_name='dmen_freq.csv',
mime='text/csv',
key='dmen'
)
with tab5:
if 'flex_freq' in st.session_state:
st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.flex_freq.to_csv().encode('utf-8'),
file_name='flex_freq.csv',
mime='text/csv',
key='flex'
)
with tab6:
if 'goalie_freq' in st.session_state:
st.dataframe(st.session_state.goalie_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.goalie_freq.to_csv().encode('utf-8'),
file_name='goalie_freq.csv',
mime='text/csv',
key='goalie'
)
with tab7:
if 'team_freq' in st.session_state:
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.team_freq.to_csv().encode('utf-8'),
file_name='team_freq.csv',
mime='text/csv',
key='team'
)
with tab8:
if 'stack_freq' in st.session_state:
st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
st.download_button(
label="Export Exposures",
data=st.session_state.stack_freq.to_csv().encode('utf-8'),
file_name='stack_freq.csv',
mime='text/csv',
key='team'
)