Spaces:
Running
Running
James McCool
commited on
Commit
·
be18476
1
Parent(s):
92d0a1f
Add custom Streamlit tab styling with golden color scheme and hover effects
Browse files
app.py
CHANGED
@@ -20,6 +20,37 @@ freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
|
20 |
dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
21 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@st.cache_data(ttl = 600)
|
24 |
def init_DK_seed_frames(sharp_split):
|
25 |
|
@@ -129,122 +160,9 @@ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
|
129 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
130 |
|
131 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
132 |
-
with tab2:
|
133 |
-
col1, col2 = st.columns([1, 7])
|
134 |
-
with col1:
|
135 |
-
if st.button("Load/Reset Data", key='reset1'):
|
136 |
-
st.cache_data.clear()
|
137 |
-
for key in st.session_state.keys():
|
138 |
-
del st.session_state[key]
|
139 |
-
DK_seed = init_DK_seed_frames(10000)
|
140 |
-
FD_seed = init_FD_seed_frames(10000)
|
141 |
-
dk_raw, fd_raw, teams_playing_count = init_baselines()
|
142 |
-
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
143 |
-
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
144 |
-
|
145 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
146 |
-
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
147 |
-
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
148 |
-
|
149 |
-
if site_var1 == 'Draftkings':
|
150 |
-
|
151 |
-
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
152 |
-
if team_var1 == 'Specific Teams':
|
153 |
-
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
154 |
-
elif team_var1 == 'Full Slate':
|
155 |
-
team_var2 = dk_raw.Team.values.tolist()
|
156 |
-
|
157 |
-
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
158 |
-
if stack_var1 == 'Specific Stack Sizes':
|
159 |
-
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
160 |
-
elif stack_var1 == 'Full Slate':
|
161 |
-
stack_var2 = [5, 4, 3, 2, 1, 0]
|
162 |
-
|
163 |
-
elif site_var1 == 'Fanduel':
|
164 |
-
|
165 |
-
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
166 |
-
if team_var1 == 'Specific Teams':
|
167 |
-
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
|
168 |
-
elif team_var1 == 'Full Slate':
|
169 |
-
team_var2 = fd_raw.Team.values.tolist()
|
170 |
-
|
171 |
-
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
172 |
-
if stack_var1 == 'Specific Stack Sizes':
|
173 |
-
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
174 |
-
elif stack_var1 == 'Full Slate':
|
175 |
-
stack_var2 = [5, 4, 3, 2, 1, 0]
|
176 |
-
|
177 |
-
|
178 |
-
if st.button("Prepare data export", key='data_export'):
|
179 |
-
if 'working_seed' in st.session_state:
|
180 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
181 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
182 |
-
elif 'working_seed' not in st.session_state:
|
183 |
-
if site_var1 == 'Draftkings':
|
184 |
-
if slate_var1 == 'Main Slate':
|
185 |
-
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
186 |
-
|
187 |
-
raw_baselines = dk_raw
|
188 |
-
column_names = dk_columns
|
189 |
-
|
190 |
-
elif site_var1 == 'Fanduel':
|
191 |
-
if slate_var1 == 'Main Slate':
|
192 |
-
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
193 |
-
|
194 |
-
raw_baselines = fd_raw
|
195 |
-
column_names = fd_columns
|
196 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
197 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
198 |
-
data_export = st.session_state.working_seed.copy()
|
199 |
-
st.download_button(
|
200 |
-
label="Export optimals set",
|
201 |
-
data=convert_df(data_export),
|
202 |
-
file_name='NHL_optimals_export.csv',
|
203 |
-
mime='text/csv',
|
204 |
-
)
|
205 |
-
for key in st.session_state.keys():
|
206 |
-
del st.session_state[key]
|
207 |
-
|
208 |
-
with col2:
|
209 |
-
if st.button("Load Data", key='load_data'):
|
210 |
-
if site_var1 == 'Draftkings':
|
211 |
-
if 'working_seed' in st.session_state:
|
212 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
213 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
214 |
-
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
215 |
-
elif 'working_seed' not in st.session_state:
|
216 |
-
if slate_var1 == 'Main Slate':
|
217 |
-
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
218 |
-
|
219 |
-
raw_baselines = dk_raw
|
220 |
-
column_names = dk_columns
|
221 |
-
|
222 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
223 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
224 |
-
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
225 |
-
|
226 |
-
elif site_var1 == 'Fanduel':
|
227 |
-
if 'working_seed' in st.session_state:
|
228 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
229 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
230 |
-
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
231 |
-
elif 'working_seed' not in st.session_state:
|
232 |
-
if slate_var1 == 'Main Slate':
|
233 |
-
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
234 |
-
|
235 |
-
raw_baselines = fd_raw
|
236 |
-
column_names = fd_columns
|
237 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
238 |
-
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
239 |
-
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
|
240 |
-
|
241 |
-
with st.container():
|
242 |
-
if 'data_export_display' in st.session_state:
|
243 |
-
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|
244 |
|
245 |
with tab1:
|
246 |
-
|
247 |
-
with col1:
|
248 |
if st.button("Load/Reset Data", key='reset2'):
|
249 |
st.cache_data.clear()
|
250 |
for key in st.session_state.keys():
|
@@ -279,195 +197,194 @@ with tab1:
|
|
279 |
elif strength_var1 == 'Very':
|
280 |
sharp_split = 10000
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
#st.table(Sim_Winner_Frame)
|
298 |
-
|
299 |
-
# Initial setup
|
300 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
301 |
-
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
302 |
-
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
303 |
-
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
304 |
-
|
305 |
-
# Type Casting
|
306 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
307 |
-
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
308 |
-
|
309 |
-
# Sorting
|
310 |
-
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
311 |
-
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
312 |
-
|
313 |
-
# Data Copying
|
314 |
-
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
315 |
-
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
316 |
-
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
317 |
-
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
318 |
-
|
319 |
-
# Data Copying
|
320 |
-
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
321 |
-
|
322 |
-
else:
|
323 |
-
if sim_site_var1 == 'Draftkings':
|
324 |
-
if sim_slate_var1 == 'Main Slate':
|
325 |
-
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
326 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
raw_baselines = dk_raw
|
328 |
column_names = dk_columns
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
raw_baselines = fd_raw
|
334 |
column_names = fd_columns
|
335 |
-
st.session_state.maps_dict = {
|
336 |
-
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
337 |
-
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
338 |
-
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
339 |
-
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
340 |
-
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
341 |
-
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
342 |
-
}
|
343 |
-
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
|
344 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
345 |
-
|
346 |
-
#st.table(Sim_Winner_Frame)
|
347 |
-
|
348 |
-
# Initial setup
|
349 |
-
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
350 |
-
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
351 |
-
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
352 |
-
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
353 |
-
|
354 |
-
# Type Casting
|
355 |
-
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
356 |
-
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
357 |
-
|
358 |
-
# Sorting
|
359 |
-
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
360 |
-
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
361 |
-
|
362 |
-
# Data Copying
|
363 |
-
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
364 |
-
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
365 |
-
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
366 |
-
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
367 |
-
|
368 |
-
# Data Copying
|
369 |
-
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
370 |
-
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
|
371 |
-
|
372 |
-
if sim_site_var1 == 'Draftkings':
|
373 |
-
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
374 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
375 |
-
elif sim_site_var1 == 'Fanduel':
|
376 |
-
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
377 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
378 |
-
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
379 |
-
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
380 |
-
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
381 |
-
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
382 |
-
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
383 |
-
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
384 |
-
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
385 |
-
st.session_state.player_freq = freq_working.copy()
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
center_working['Exposure'] = center_working['Freq']/(1000)
|
398 |
-
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
|
399 |
-
center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
400 |
-
st.session_state.center_freq = center_working.copy()
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
410 |
-
wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
411 |
-
wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
412 |
-
wing_working['Exposure'] = wing_working['Freq']/(1000)
|
413 |
-
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
|
414 |
-
wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
415 |
-
st.session_state.wing_freq = wing_working.copy()
|
416 |
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
elif sim_site_var1 == 'Fanduel':
|
421 |
-
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
|
422 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
423 |
-
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
|
424 |
-
dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
425 |
-
dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
426 |
-
dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
427 |
-
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
|
428 |
-
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
|
429 |
-
dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
430 |
-
st.session_state.dmen_freq = dmen_working.copy()
|
431 |
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
elif sim_site_var1 == 'Fanduel':
|
436 |
-
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
|
437 |
-
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
438 |
-
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
439 |
-
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
440 |
-
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
441 |
-
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
442 |
-
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
443 |
-
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
444 |
-
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
445 |
-
st.session_state.flex_freq = flex_working.copy()
|
446 |
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
471 |
|
472 |
with st.container():
|
473 |
if st.button("Reset Sim", key='reset_sim'):
|
@@ -697,4 +614,128 @@ with tab1:
|
|
697 |
file_name='team_freq.csv',
|
698 |
mime='text/csv',
|
699 |
key='team'
|
700 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
21 |
fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
|
23 |
+
st.markdown("""
|
24 |
+
<style>
|
25 |
+
/* Tab styling */
|
26 |
+
.stTabs [data-baseweb="tab-list"] {
|
27 |
+
gap: 8px;
|
28 |
+
padding: 4px;
|
29 |
+
}
|
30 |
+
|
31 |
+
.stTabs [data-baseweb="tab"] {
|
32 |
+
height: 50px;
|
33 |
+
white-space: pre-wrap;
|
34 |
+
background-color: #FFD700;
|
35 |
+
color: white;
|
36 |
+
border-radius: 10px;
|
37 |
+
gap: 1px;
|
38 |
+
padding: 10px 20px;
|
39 |
+
font-weight: bold;
|
40 |
+
transition: all 0.3s ease;
|
41 |
+
}
|
42 |
+
|
43 |
+
.stTabs [aria-selected="true"] {
|
44 |
+
background-color: #DAA520;
|
45 |
+
color: white;
|
46 |
+
}
|
47 |
+
|
48 |
+
.stTabs [data-baseweb="tab"]:hover {
|
49 |
+
background-color: #DAA520;
|
50 |
+
cursor: pointer;
|
51 |
+
}
|
52 |
+
</style>""", unsafe_allow_html=True)
|
53 |
+
|
54 |
@st.cache_data(ttl = 600)
|
55 |
def init_DK_seed_frames(sharp_split):
|
56 |
|
|
|
160 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
161 |
|
162 |
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
with tab1:
|
165 |
+
with st.expander("Info and Filters"):
|
|
|
166 |
if st.button("Load/Reset Data", key='reset2'):
|
167 |
st.cache_data.clear()
|
168 |
for key in st.session_state.keys():
|
|
|
197 |
elif strength_var1 == 'Very':
|
198 |
sharp_split = 10000
|
199 |
|
200 |
+
if st.button("Run Contest Sim"):
|
201 |
+
if 'working_seed' in st.session_state:
|
202 |
+
st.session_state.maps_dict = {
|
203 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
204 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
205 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
206 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
207 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
208 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
209 |
+
}
|
210 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
|
211 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
212 |
+
|
213 |
+
#st.table(Sim_Winner_Frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
|
215 |
+
# Initial setup
|
216 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
217 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
218 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
219 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
220 |
+
|
221 |
+
# Type Casting
|
222 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
223 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
224 |
+
|
225 |
+
# Sorting
|
226 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
227 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
228 |
+
|
229 |
+
# Data Copying
|
230 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
231 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
232 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
233 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
234 |
+
|
235 |
+
# Data Copying
|
236 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
237 |
+
|
238 |
+
else:
|
239 |
+
if sim_site_var1 == 'Draftkings':
|
240 |
+
if sim_slate_var1 == 'Main Slate':
|
241 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
242 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
243 |
raw_baselines = dk_raw
|
244 |
column_names = dk_columns
|
245 |
+
elif sim_site_var1 == 'Fanduel':
|
246 |
+
if sim_slate_var1 == 'Main Slate':
|
247 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
248 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
249 |
raw_baselines = fd_raw
|
250 |
column_names = fd_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
+
st.session_state.maps_dict = {
|
253 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
254 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
255 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
256 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
257 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
258 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
259 |
+
}
|
260 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
|
261 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
|
|
|
|
|
|
|
|
262 |
|
263 |
+
#st.table(Sim_Winner_Frame)
|
264 |
+
|
265 |
+
# Initial setup
|
266 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
267 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
268 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
269 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
# Type Casting
|
272 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
273 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
+
# Sorting
|
276 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
277 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
279 |
+
# Data Copying
|
280 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
281 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
282 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
283 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
284 |
+
|
285 |
+
# Data Copying
|
286 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
287 |
+
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
|
288 |
+
|
289 |
+
if sim_site_var1 == 'Draftkings':
|
290 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
291 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
292 |
+
elif sim_site_var1 == 'Fanduel':
|
293 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
294 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
295 |
+
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
296 |
+
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
297 |
+
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
298 |
+
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
299 |
+
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
300 |
+
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
301 |
+
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
302 |
+
st.session_state.player_freq = freq_working.copy()
|
303 |
|
304 |
+
if sim_site_var1 == 'Draftkings':
|
305 |
+
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
306 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
307 |
+
elif sim_site_var1 == 'Fanduel':
|
308 |
+
center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
309 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
310 |
+
center_working['Freq'] = center_working['Freq'].astype(int)
|
311 |
+
center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
312 |
+
center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
313 |
+
center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
314 |
+
center_working['Exposure'] = center_working['Freq']/(1000)
|
315 |
+
center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
|
316 |
+
center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
317 |
+
st.session_state.center_freq = center_working.copy()
|
318 |
+
|
319 |
+
if sim_site_var1 == 'Draftkings':
|
320 |
+
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:5].values, return_counts=True)),
|
321 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
322 |
+
elif sim_site_var1 == 'Fanduel':
|
323 |
+
wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
|
324 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
325 |
+
wing_working['Freq'] = wing_working['Freq'].astype(int)
|
326 |
+
wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
327 |
+
wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
328 |
+
wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
329 |
+
wing_working['Exposure'] = wing_working['Freq']/(1000)
|
330 |
+
wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
|
331 |
+
wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
332 |
+
st.session_state.wing_freq = wing_working.copy()
|
333 |
+
|
334 |
+
if sim_site_var1 == 'Draftkings':
|
335 |
+
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:7].values, return_counts=True)),
|
336 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
337 |
+
elif sim_site_var1 == 'Fanduel':
|
338 |
+
dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
|
339 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
340 |
+
dmen_working['Freq'] = dmen_working['Freq'].astype(int)
|
341 |
+
dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
342 |
+
dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
343 |
+
dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
344 |
+
dmen_working['Exposure'] = dmen_working['Freq']/(1000)
|
345 |
+
dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
|
346 |
+
dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
347 |
+
st.session_state.dmen_freq = dmen_working.copy()
|
348 |
+
|
349 |
+
if sim_site_var1 == 'Draftkings':
|
350 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
|
351 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
352 |
+
elif sim_site_var1 == 'Fanduel':
|
353 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
|
354 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
355 |
+
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
356 |
+
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
357 |
+
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
358 |
+
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
359 |
+
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
360 |
+
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
361 |
+
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
362 |
+
st.session_state.flex_freq = flex_working.copy()
|
363 |
+
|
364 |
+
if sim_site_var1 == 'Draftkings':
|
365 |
+
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
|
366 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
367 |
+
elif sim_site_var1 == 'Fanduel':
|
368 |
+
goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
|
369 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
370 |
+
goalie_working['Freq'] = goalie_working['Freq'].astype(int)
|
371 |
+
goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
372 |
+
goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
373 |
+
goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
374 |
+
goalie_working['Exposure'] = goalie_working['Freq']/(1000)
|
375 |
+
goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
|
376 |
+
goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
377 |
+
st.session_state.goalie_freq = goalie_working.copy()
|
378 |
+
|
379 |
+
if sim_site_var1 == 'Draftkings':
|
380 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
|
381 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
382 |
+
elif sim_site_var1 == 'Fanduel':
|
383 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
|
384 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
385 |
+
team_working['Freq'] = team_working['Freq'].astype(int)
|
386 |
+
team_working['Exposure'] = team_working['Freq']/(1000)
|
387 |
+
st.session_state.team_freq = team_working.copy()
|
388 |
|
389 |
with st.container():
|
390 |
if st.button("Reset Sim", key='reset_sim'):
|
|
|
614 |
file_name='team_freq.csv',
|
615 |
mime='text/csv',
|
616 |
key='team'
|
617 |
+
)
|
618 |
+
|
619 |
+
with tab2:
|
620 |
+
with st.expander("Info and Filters"):
|
621 |
+
if st.button("Load/Reset Data", key='reset1'):
|
622 |
+
st.cache_data.clear()
|
623 |
+
for key in st.session_state.keys():
|
624 |
+
del st.session_state[key]
|
625 |
+
DK_seed = init_DK_seed_frames(10000)
|
626 |
+
FD_seed = init_FD_seed_frames(10000)
|
627 |
+
dk_raw, fd_raw, teams_playing_count = init_baselines()
|
628 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
629 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
630 |
+
|
631 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
|
632 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
633 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
634 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
635 |
+
|
636 |
+
if site_var1 == 'Draftkings':
|
637 |
+
|
638 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
639 |
+
if team_var1 == 'Specific Teams':
|
640 |
+
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
641 |
+
elif team_var1 == 'Full Slate':
|
642 |
+
team_var2 = dk_raw.Team.values.tolist()
|
643 |
+
|
644 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
645 |
+
if stack_var1 == 'Specific Stack Sizes':
|
646 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
647 |
+
elif stack_var1 == 'Full Slate':
|
648 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
649 |
+
|
650 |
+
raw_baselines = dk_raw
|
651 |
+
column_names = dk_columns
|
652 |
+
|
653 |
+
elif site_var1 == 'Fanduel':
|
654 |
+
|
655 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
656 |
+
if team_var1 == 'Specific Teams':
|
657 |
+
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
|
658 |
+
elif team_var1 == 'Full Slate':
|
659 |
+
team_var2 = fd_raw.Team.values.tolist()
|
660 |
+
|
661 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
662 |
+
if stack_var1 == 'Specific Stack Sizes':
|
663 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
664 |
+
elif stack_var1 == 'Full Slate':
|
665 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
666 |
+
|
667 |
+
raw_baselines = fd_raw
|
668 |
+
column_names = fd_columns
|
669 |
+
|
670 |
+
|
671 |
+
if st.button("Prepare data export", key='data_export'):
|
672 |
+
if 'working_seed' in st.session_state:
|
673 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
674 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
675 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
676 |
+
elif 'working_seed' not in st.session_state:
|
677 |
+
if site_var1 == 'Draftkings':
|
678 |
+
if slate_var1 == 'Main Slate':
|
679 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
680 |
+
|
681 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
682 |
+
raw_baselines = dk_raw
|
683 |
+
column_names = dk_columns
|
684 |
+
|
685 |
+
elif site_var1 == 'Fanduel':
|
686 |
+
if slate_var1 == 'Main Slate':
|
687 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
688 |
+
|
689 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
690 |
+
raw_baselines = fd_raw
|
691 |
+
column_names = fd_columns
|
692 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
693 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
694 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
695 |
+
data_export = st.session_state.working_seed.copy()
|
696 |
+
st.download_button(
|
697 |
+
label="Export optimals set",
|
698 |
+
data=convert_df(data_export),
|
699 |
+
file_name='NHL_optimals_export.csv',
|
700 |
+
mime='text/csv',
|
701 |
+
)
|
702 |
+
for key in st.session_state.keys():
|
703 |
+
del st.session_state[key]
|
704 |
+
|
705 |
+
if st.button("Load Data", key='load_data'):
|
706 |
+
if site_var1 == 'Draftkings':
|
707 |
+
if 'working_seed' in st.session_state:
|
708 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
709 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
710 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
711 |
+
elif 'working_seed' not in st.session_state:
|
712 |
+
if slate_var1 == 'Main Slate':
|
713 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
714 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
715 |
+
|
716 |
+
raw_baselines = dk_raw
|
717 |
+
column_names = dk_columns
|
718 |
+
|
719 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
720 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
721 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
722 |
+
|
723 |
+
elif site_var1 == 'Fanduel':
|
724 |
+
if 'working_seed' in st.session_state:
|
725 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
726 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
727 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
728 |
+
elif 'working_seed' not in st.session_state:
|
729 |
+
if slate_var1 == 'Main Slate':
|
730 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
731 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
732 |
+
|
733 |
+
raw_baselines = fd_raw
|
734 |
+
column_names = fd_columns
|
735 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
736 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
737 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
738 |
+
|
739 |
+
with st.container():
|
740 |
+
if 'data_export_display' in st.session_state:
|
741 |
+
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|