import streamlit as st st.set_page_config(layout="wide") import numpy as np import pandas as pd import pymongo @st.cache_resource def init_conn(): uri = st.secrets['mongo_uri'] client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) db = client["NHL_Database"] return db db = init_conn() percentages_format = {'Exposure': '{:.2%}'} freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'} dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] st.markdown(""" """, unsafe_allow_html=True) @st.cache_data(ttl = 600) def init_DK_seed_frames(sharp_split): collection = db["DK_NHL_seed_frame"] cursor = collection.find().limit(sharp_split) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] DK_seed = raw_display.to_numpy() return DK_seed @st.cache_data(ttl = 599) def init_FD_seed_frames(sharp_split): collection = db["FD_NHL_seed_frame"] cursor = collection.find().limit(sharp_split) raw_display = pd.DataFrame(list(cursor)) raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] FD_seed = raw_display.to_numpy() return FD_seed @st.cache_data(ttl = 599) def init_baselines(): collection = db["Player_Level_ROO"] cursor = collection.find() raw_display = pd.DataFrame(list(cursor)) load_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']] load_display['STDev'] = load_display['Median'] / 3 DK_load_display = load_display[load_display['Site'] == 'Draftkings'] DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first') dk_raw = DK_load_display.dropna(subset=['Median']) dk_raw['Team'] = dk_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK']) FD_load_display = load_display[load_display['Site'] == 'Fanduel'] FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first') fd_raw = FD_load_display.dropna(subset=['Median']) fd_raw['Team'] = fd_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK']) teams_playing_count = len(dk_raw.Team.unique()) return dk_raw, fd_raw, teams_playing_count @st.cache_data def convert_df(array): array = pd.DataFrame(array, columns=column_names) return array.to_csv().encode('utf-8') @st.cache_data def calculate_DK_value_frequencies(np_array): unique, counts = np.unique(np_array[:, :9], return_counts=True) frequencies = counts / len(np_array) # Normalize by the number of rows combined_array = np.column_stack((unique, frequencies)) return combined_array @st.cache_data def calculate_FD_value_frequencies(np_array): unique, counts = np.unique(np_array[:, :9], return_counts=True) frequencies = counts / len(np_array) # Normalize by the number of rows combined_array = np.column_stack((unique, frequencies)) return combined_array @st.cache_data def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count): SimVar = 1 Sim_Winners = [] fp_array = seed_frame.copy() # Pre-vectorize functions vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__) vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__) st.write('Simulating contest on frames') while SimVar <= Sim_size: fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)] # Calculate stack multipliers first stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0)) stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0)) # Apply multipliers to both loc and scale in the normal distribution base_projections = np.sum(np.random.normal( loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis], scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]), axis=1) final_projections = base_projections sample_arrays = np.c_[fp_random, final_projections] final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]] best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]] Sim_Winners.append(best_lineup) SimVar += 1 return Sim_Winners dk_raw, fd_raw, teams_playing_count = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) tab1, tab2 = st.tabs(['Contest Sims', 'Data Export']) with tab1: with st.expander("Info and Filters"): if st.button("Load/Reset Data", key='reset2'): st.cache_data.clear() for key in st.session_state.keys(): del st.session_state[key] DK_seed = init_DK_seed_frames(10000) FD_seed = init_FD_seed_frames(10000) dk_raw, fd_raw, teams_playing_count = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1') sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1') contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom')) if contest_var1 == 'Small': Contest_Size = 1000 elif contest_var1 == 'Medium': Contest_Size = 5000 elif contest_var1 == 'Large': Contest_Size = 10000 elif contest_var1 == 'Custom': Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...") strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very')) if strength_var1 == 'Not Very': sharp_split = 500000 elif strength_var1 == 'Below Average': sharp_split = 250000 elif strength_var1 == 'Average': sharp_split = 100000 elif strength_var1 == 'Above Average': sharp_split = 50000 elif strength_var1 == 'Very': sharp_split = 10000 if st.button("Run Contest Sim"): if 'working_seed' in st.session_state: st.session_state.maps_dict = { 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) } Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count) Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) #st.table(Sim_Winner_Frame) # Initial setup Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) # Type Casting type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) # Sorting st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) # Data Copying st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns: st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict) st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id']) # Data Copying st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() else: if sim_site_var1 == 'Draftkings': if sim_slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns elif sim_site_var1 == 'Fanduel': if sim_slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns st.session_state.maps_dict = { 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)), 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)), 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)), 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])), 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)), 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev)) } Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count) Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners)) #st.table(Sim_Winner_Frame) # Initial setup Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy']) Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2 Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str) Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts())) # Type Casting type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32} Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict) # Sorting st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100) st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True) # Data Copying st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy() for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns: st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict) st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id']) # Data Copying st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy() st.session_state.freq_copy = st.session_state.Sim_Winner_Display if sim_site_var1 == 'Draftkings': freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) freq_working['Freq'] = freq_working['Freq'].astype(int) freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map']) freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map']) freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 freq_working['Exposure'] = freq_working['Freq']/(1000) freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own'] freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.player_freq = freq_working.copy() if sim_site_var1 == 'Draftkings': center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) center_working['Freq'] = center_working['Freq'].astype(int) center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map']) center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map']) center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 center_working['Exposure'] = center_working['Freq']/(1000) center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own'] center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.center_freq = center_working.copy() if sim_site_var1 == 'Draftkings': wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:5].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) wing_working['Freq'] = wing_working['Freq'].astype(int) wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map']) wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map']) wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 wing_working['Exposure'] = wing_working['Freq']/(1000) wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own'] wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.wing_freq = wing_working.copy() if sim_site_var1 == 'Draftkings': dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:7].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) dmen_working['Freq'] = dmen_working['Freq'].astype(int) dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map']) dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map']) dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 dmen_working['Exposure'] = dmen_working['Freq']/(1000) dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own'] dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.dmen_freq = dmen_working.copy() if sim_site_var1 == 'Draftkings': flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) flex_working['Freq'] = flex_working['Freq'].astype(int) flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map']) flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map']) flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 flex_working['Exposure'] = flex_working['Freq']/(1000) flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own'] flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.flex_freq = flex_working.copy() if sim_site_var1 == 'Draftkings': goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) goalie_working['Freq'] = goalie_working['Freq'].astype(int) goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map']) goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map']) goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100 goalie_working['Exposure'] = goalie_working['Freq']/(1000) goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own'] goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map']) st.session_state.goalie_freq = goalie_working.copy() if sim_site_var1 == 'Draftkings': team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) elif sim_site_var1 == 'Fanduel': team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)), columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True) team_working['Freq'] = team_working['Freq'].astype(int) team_working['Exposure'] = team_working['Freq']/(1000) st.session_state.team_freq = team_working.copy() with st.container(): if st.button("Reset Sim", key='reset_sim'): for key in st.session_state.keys(): del st.session_state[key] if 'player_freq' in st.session_state: player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2') if player_split_var2 == 'Specific Players': find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique()) elif player_split_var2 == 'Full Players': find_var2 = st.session_state.player_freq.Player.values.tolist() if player_split_var2 == 'Specific Players': st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)] if player_split_var2 == 'Full Players': st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame if 'Sim_Winner_Display' in st.session_state: st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) if 'Sim_Winner_Export' in st.session_state: st.download_button( label="Export Full Frame", data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'), file_name='MLB_consim_export.csv', mime='text/csv', ) tab1, tab2, tab3 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics', 'Stack Type Statistics']) with tab1: if 'Sim_Winner_Display' in st.session_state: # Create a new dataframe with summary statistics summary_df = pd.DataFrame({ 'Metric': ['Min', 'Average', 'Max', 'STDdev'], 'Salary': [ st.session_state.Sim_Winner_Display['salary'].min(), st.session_state.Sim_Winner_Display['salary'].mean(), st.session_state.Sim_Winner_Display['salary'].max(), st.session_state.Sim_Winner_Display['salary'].std() ], 'Proj': [ st.session_state.Sim_Winner_Display['proj'].min(), st.session_state.Sim_Winner_Display['proj'].mean(), st.session_state.Sim_Winner_Display['proj'].max(), st.session_state.Sim_Winner_Display['proj'].std() ], 'Own': [ st.session_state.Sim_Winner_Display['Own'].min(), st.session_state.Sim_Winner_Display['Own'].mean(), st.session_state.Sim_Winner_Display['Own'].max(), st.session_state.Sim_Winner_Display['Own'].std() ], 'Fantasy': [ st.session_state.Sim_Winner_Display['Fantasy'].min(), st.session_state.Sim_Winner_Display['Fantasy'].mean(), st.session_state.Sim_Winner_Display['Fantasy'].max(), st.session_state.Sim_Winner_Display['Fantasy'].std() ], 'GPP_Proj': [ st.session_state.Sim_Winner_Display['GPP_Proj'].min(), st.session_state.Sim_Winner_Display['GPP_Proj'].mean(), st.session_state.Sim_Winner_Display['GPP_Proj'].max(), st.session_state.Sim_Winner_Display['GPP_Proj'].std() ] }) # Set the index of the summary dataframe as the "Metric" column summary_df = summary_df.set_index('Metric') # Display the summary dataframe st.subheader("Winning Frame Statistics") st.dataframe(summary_df.style.format({ 'Salary': '{:.2f}', 'Proj': '{:.2f}', 'Own': '{:.2f}', 'Fantasy': '{:.2f}', 'GPP_Proj': '{:.2f}' }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True) with tab2: if 'Sim_Winner_Display' in st.session_state: # Apply position mapping to FLEX column if sim_site_var1 == 'Draftkings': flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map']) elif sim_site_var1 == 'Fanduel': flex1_positions = st.session_state.freq_copy['FLEX1'].map(st.session_state.maps_dict['Pos_map']) flex2_positions = st.session_state.freq_copy['FLEX2'].map(st.session_state.maps_dict['Pos_map']) flex_positions = pd.concat([flex1_positions, flex2_positions]) # Count occurrences of each position in FLEX flex_counts = flex_positions.value_counts() # Calculate average statistics for each FLEX position flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({ 'proj': 'mean', 'Own': 'mean', 'Fantasy': 'mean', 'GPP_Proj': 'mean' }) # Combine counts and average statistics flex_summary = pd.concat([flex_counts, flex_stats], axis=1) flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj'] flex_summary = flex_summary.reset_index() flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj'] # Display the summary dataframe st.subheader("FLEX Position Statistics") st.dataframe(flex_summary.style.format({ 'Count': '{:.0f}', 'Avg Proj': '{:.2f}', 'Avg Own': '{:.2f}', 'Avg Fantasy': '{:.2f}', 'Avg GPP_Proj': '{:.2f}' }).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True) else: st.write("Simulation data or position mapping not available.") with tab3: if 'Sim_Winner_Display' in st.session_state: # Apply position mapping to FLEX column stack_counts = st.session_state.freq_copy['Team_count'].value_counts() # Calculate average statistics for each stack size stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({ 'proj': 'mean', 'Own': 'mean', 'Fantasy': 'mean', 'GPP_Proj': 'mean' }) # Combine counts and average statistics stack_summary = pd.concat([stack_counts, stack_stats], axis=1) stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj'] stack_summary = stack_summary.reset_index() stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj'] stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True) stack_summary = stack_summary.set_index('Stack Size') # Display the summary dataframe st.subheader("Stack Type Statistics") st.dataframe(stack_summary.style.format({ 'Count': '{:.0f}', 'Avg Proj': '{:.2f}', 'Avg Own': '{:.2f}', 'Avg Fantasy': '{:.2f}', 'Avg GPP_Proj': '{:.2f}' }).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True) else: st.write("Simulation data or position mapping not available.") with st.container(): tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures']) with tab1: if 'player_freq' in st.session_state: st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.player_freq.to_csv().encode('utf-8'), file_name='player_freq_export.csv', mime='text/csv', key='overall' ) with tab2: if 'center_freq' in st.session_state: st.dataframe(st.session_state.center_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.center_freq.to_csv().encode('utf-8'), file_name='center_freq.csv', mime='text/csv', key='center' ) with tab3: if 'wing_freq' in st.session_state: st.dataframe(st.session_state.wing_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.wing_freq.to_csv().encode('utf-8'), file_name='wing_freq.csv', mime='text/csv', key='wing' ) with tab4: if 'dmen_freq' in st.session_state: st.dataframe(st.session_state.dmen_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.dmen_freq.to_csv().encode('utf-8'), file_name='dmen_freq.csv', mime='text/csv', key='dmen' ) with tab5: if 'flex_freq' in st.session_state: st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.flex_freq.to_csv().encode('utf-8'), file_name='flex_freq.csv', mime='text/csv', key='flex' ) with tab6: if 'goalie_freq' in st.session_state: st.dataframe(st.session_state.goalie_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.goalie_freq.to_csv().encode('utf-8'), file_name='goalie_freq.csv', mime='text/csv', key='goalie' ) with tab7: if 'team_freq' in st.session_state: st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True) st.download_button( label="Export Exposures", data=st.session_state.team_freq.to_csv().encode('utf-8'), file_name='team_freq.csv', mime='text/csv', key='team' ) with tab2: with st.expander("Info and Filters"): if st.button("Load/Reset Data", key='reset1'): st.cache_data.clear() for key in st.session_state.keys(): del st.session_state[key] DK_seed = init_DK_seed_frames(10000) FD_seed = init_FD_seed_frames(10000) dk_raw, fd_raw, teams_playing_count = init_baselines() dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate')) site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel')) sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000) lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1) if site_var1 == 'Draftkings': team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1') if team_var1 == 'Specific Teams': team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique()) elif team_var1 == 'Full Slate': team_var2 = dk_raw.Team.values.tolist() stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1') if stack_var1 == 'Specific Stack Sizes': stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0]) elif stack_var1 == 'Full Slate': stack_var2 = [5, 4, 3, 2, 1, 0] raw_baselines = dk_raw column_names = dk_columns elif site_var1 == 'Fanduel': team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1') if team_var1 == 'Specific Teams': team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique()) elif team_var1 == 'Full Slate': team_var2 = fd_raw.Team.values.tolist() stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1') if stack_var1 == 'Specific Stack Sizes': stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0]) elif stack_var1 == 'Full Slate': stack_var2 = [5, 4, 3, 2, 1, 0] raw_baselines = fd_raw column_names = fd_columns if st.button("Prepare data export", key='data_export'): if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] elif 'working_seed' not in st.session_state: if site_var1 == 'Draftkings': if slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns elif site_var1 == 'Fanduel': if slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var] data_export = st.session_state.working_seed.copy() st.download_button( label="Export optimals set", data=convert_df(data_export), file_name='NHL_optimals_export.csv', mime='text/csv', ) for key in st.session_state.keys(): del st.session_state[key] if st.button("Load Data", key='load_data'): if site_var1 == 'Draftkings': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_DK_seed_frames(sharp_split_var) dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id)) raw_baselines = dk_raw column_names = dk_columns st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif site_var1 == 'Fanduel': if 'working_seed' in st.session_state: st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) elif 'working_seed' not in st.session_state: if slate_var1 == 'Main Slate': st.session_state.working_seed = init_FD_seed_frames(sharp_split_var) fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id)) raw_baselines = fd_raw column_names = fd_columns st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)] st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)] st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) with st.container(): if 'data_export_display' in st.session_state: st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)