Spaces:
Running
Running
import streamlit as st | |
st.set_page_config(layout="wide") | |
for name in dir(): | |
if not name.startswith('_'): | |
del globals()[name] | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gc | |
import pymongo | |
def init_conn(): | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["PGA_Database"] | |
return db | |
db = init_conn() | |
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624' | |
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624' | |
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', '7x%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}', | |
'12x%': '{:.2%}','LevX': '{:.2%}'} | |
dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own'] | |
fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own'] | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
</style>""", unsafe_allow_html=True) | |
def init_baselines(): | |
collection = db["PGA_Placement_Rates"] | |
cursor = collection.find() | |
placement_frame = pd.DataFrame(cursor) | |
collection = db["PGA_Range_of_Outcomes"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
player_frame['Cut_Odds'] = player_frame['Player'].map(placement_frame['Cut_Odds']) | |
player_frame = player_frame[['Player', 'Cut_Odds'] + [col for col in player_frame.columns if col not in ['Player', 'Cut_Odds']]] | |
timestamp = player_frame['Timestamp'][0] | |
roo_data = player_frame.drop(columns=['_id', 'index', 'Timestamp']) | |
roo_data['Salary'] = roo_data['Salary'].astype(int) | |
collection = db["PGA_SD_ROO"] | |
cursor = collection.find() | |
player_frame = pd.DataFrame(cursor) | |
sd_roo_data = player_frame.drop(columns=['_id', 'index']) | |
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int) | |
sd_roo_data = player_frame.drop(columns=['_id', 'index']) | |
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int) | |
return roo_data, sd_roo_data, timestamp | |
def init_DK_lineups(type): | |
if type == 'Regular': | |
collection = db['PGA_DK_Seed_Frame_Name_Map'] | |
elif type == 'Showdown': | |
collection = db['PGA_DK_SD_Seed_Frame_Name_Map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
if type == 'Regular': | |
collection = db["PGA_DK_Seed_Frame"] | |
elif type == 'Showdown': | |
collection = db["PGA_DK_SD_Seed_Frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']] | |
dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_lineups(type): | |
if type == 'Regular': | |
collection = db['PGA_FD_Seed_Frame_Name_Map'] | |
elif type == 'Showdown': | |
collection = db['PGA_DK_SD_Seed_Frame_Name_Map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
if type == 'Regular': | |
collection = db["PGA_FD_Seed_Frame"] | |
elif type == 'Showdown': | |
collection = db["PGA_DK_SD_Seed_Frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']] | |
dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
roo_data, sd_roo_data, timestamp = init_baselines() | |
hold_display = roo_data | |
lineup_display = [] | |
check_list = [] | |
rand_player = 0 | |
boost_player = 0 | |
salaryCut = 0 | |
tab1, tab2 = st.tabs(["Player Overall Projections", "Optimals and Exposures"]) | |
with tab1: | |
with st.expander("Info and Filters"): | |
if st.button("Reset Data", key='reset1'): | |
# Clear values from *all* all in-memory and on-disk data caches: | |
# i.e. clear values from both square and cube | |
st.cache_data.clear() | |
roo_data, sd_roo_data, timestamp = init_baselines() | |
dk_lineups = init_DK_lineups('Regular') | |
fd_lineups = init_FD_lineups('Regular') | |
hold_display = roo_data | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
st.write(timestamp) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
view_var = st.radio("Select a View", ["Simple", "Advanced"]) | |
with col2: | |
site_var = st.radio("Select a Site", ["Draftkings", "FanDuel"]) | |
with col3: | |
type_var = st.radio("Select a Type", ["Full Slate", "Showdown"]) | |
with st.container(): | |
if type_var == "Full Slate": | |
display = hold_display[hold_display['Site'] == site_var] | |
display = display.drop_duplicates(subset=['Player']) | |
elif type_var == "Showdown": | |
display = sd_roo_data | |
display = display.drop_duplicates(subset=['Player']) | |
if view_var == "Simple": | |
if type_var == "Full Slate": | |
display = display[['Player', 'Cut_Odds', 'Salary', 'Median', '10x%', 'Own']] | |
display = display.set_index('Player') | |
elif type_var == "Showdown": | |
display = display[['Player', 'Salary', 'Median', '5x%', 'Own']] | |
display = display.set_index('Player') | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True) | |
elif view_var == "Advanced": | |
display = display | |
display = display.set_index('Player') | |
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True) | |
st.download_button( | |
label="Export Projections", | |
data=convert_df_to_csv(display), | |
file_name='PGA_DFS_export.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
with st.expander("Info and Filters"): | |
if st.button("Load/Reset Data", key='reset2'): | |
st.cache_data.clear() | |
roo_data, sd_roo_data, timestamp = init_baselines() | |
hold_display = roo_data | |
dk_lineups = init_DK_lineups('Regular') | |
fd_lineups = init_FD_lineups('Regular') | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
slate_var1 = st.radio("Which data are you loading?", ('Regular', 'Showdown')) | |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel')) | |
if slate_var1 == 'Regular': | |
if site_var1 == 'Draftkings': | |
dk_lineups = init_DK_lineups('Regular') | |
elif site_var1 == 'Fanduel': | |
fd_lineups = init_FD_lineups('Regular') | |
elif slate_var1 == 'Showdown': | |
if site_var1 == 'Draftkings': | |
dk_lineups = init_DK_lineups('Showdown') | |
elif site_var1 == 'Fanduel': | |
fd_lineups = init_FD_lineups('Showdown') | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) | |
if slate_var1 == 'Regular': | |
raw_baselines = roo_data | |
elif slate_var1 == 'Showdown': | |
raw_baselines = sd_roo_data | |
if site_var1 == 'Draftkings': | |
if slate_var1 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
elif slate_var1 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
# Get the minimum and maximum ownership values from dk_lineups | |
min_own = np.min(dk_lineups[:,8]) | |
max_own = np.max(dk_lineups[:,8]) | |
column_names = dk_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = raw_baselines.Player.values.tolist() | |
elif site_var1 == 'Fanduel': | |
raw_baselines = hold_display | |
if slate_var1 == 'Regular': | |
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel'] | |
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary'])) | |
elif slate_var1 == 'Showdown': | |
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary'])) | |
min_own = np.min(fd_lineups[:,8]) | |
max_own = np.max(fd_lineups[:,8]) | |
column_names = fd_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = raw_baselines.Player.values.tolist() | |
if st.button("Prepare data export", key='data_export'): | |
data_export = st.session_state.working_seed.copy() | |
# if site_var1 == 'Draftkings': | |
# for col_idx in range(6): | |
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
# elif site_var1 == 'Fanduel': | |
# for col_idx in range(6): | |
# data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
st.download_button( | |
label="Export optimals set", | |
data=convert_df(data_export), | |
file_name='NBA_optimals_export.csv', | |
mime='text/csv', | |
) | |
if site_var1 == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var1 == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_file = st.session_state.data_export_display.copy() | |
# if site_var1 == 'Draftkings': | |
# for col_idx in range(6): | |
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
# elif site_var1 == 'Fanduel': | |
# for col_idx in range(6): | |
# export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
with st.container(): | |
if st.button("Reset Optimals", key='reset3'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if site_var1 == 'Draftkings': | |
st.session_state.working_seed = dk_lineups.copy() | |
elif site_var1 == 'Fanduel': | |
st.session_state.working_seed = fd_lineups.copy() | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
st.download_button( | |
label="Export display optimals", | |
data=convert_df(export_file), | |
file_name='NBA_display_optimals.csv', | |
mime='text/csv', | |
) | |
with st.container(): | |
if 'working_seed' in st.session_state: | |
# Create a new dataframe with summary statistics | |
if site_var1 == 'Draftkings': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,6]), | |
np.mean(st.session_state.working_seed[:,6]), | |
np.max(st.session_state.working_seed[:,6]), | |
np.std(st.session_state.working_seed[:,6]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,7]), | |
np.mean(st.session_state.working_seed[:,7]), | |
np.max(st.session_state.working_seed[:,7]), | |
np.std(st.session_state.working_seed[:,7]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,8]), | |
np.mean(st.session_state.working_seed[:,8]), | |
np.max(st.session_state.working_seed[:,8]), | |
np.std(st.session_state.working_seed[:,8]) | |
] | |
}) | |
elif site_var1 == 'Fanduel': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,6]), | |
np.mean(st.session_state.working_seed[:,6]), | |
np.max(st.session_state.working_seed[:,6]), | |
np.std(st.session_state.working_seed[:,6]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,7]), | |
np.mean(st.session_state.working_seed[:,7]), | |
np.max(st.session_state.working_seed[:,7]), | |
np.std(st.session_state.working_seed[:,7]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,8]), | |
np.mean(st.session_state.working_seed[:,8]), | |
np.max(st.session_state.working_seed[:,8]), | |
np.std(st.session_state.working_seed[:,8]) | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Optimal Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Own': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) | |
with st.container(): | |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) | |
with tab1: | |
if 'data_export_display' in st.session_state: | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.data_export_display.iloc[:, :6] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.data_export_display.iloc[:, :6] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.values.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / lineup_num_var * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Player Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export player frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='PGA_player_frequency.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if 'working_seed' in st.session_state: | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.working_seed[:, :6] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.working_seed[:, :6] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df['Salary'] = summary_df['Player'].map(player_salaries) | |
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']] | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
summary_df = summary_df.set_index('Player') | |
# Display the table | |
st.write("Seed Frame Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True) | |
st.download_button( | |
label="Export seed frame frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='PGA_seed_frame_frequency.csv', | |
mime='text/csv', | |
) |