Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
from llama_cpp import Llama
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import transformers
|
7 |
+
import torch
|
8 |
+
|
9 |
+
llm_name = "MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF"
|
10 |
+
llm_path = os.path.basename(llm_name)
|
11 |
+
|
12 |
+
# download gguf model
|
13 |
+
def download_llms(llm_name):
|
14 |
+
"""Download GGUF model"""
|
15 |
+
|
16 |
+
download_url = ""
|
17 |
+
print("Downloading " + llm_name)
|
18 |
+
download_url = "https://huggingface.co/MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF/resolve/main/Q4_K_M.gguf"
|
19 |
+
|
20 |
+
# elif selected_llm == 'microsoft/Phi-3-mini-4k-instruct':
|
21 |
+
# download_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf"
|
22 |
+
# elif selected_llm == 'mistralai/Mistral-7B-Instruct-v0.2':
|
23 |
+
# download_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q2_K.gguf"
|
24 |
+
|
25 |
+
if not os.path.exists("model"):
|
26 |
+
os.makedirs("model")
|
27 |
+
|
28 |
+
llm_filename = os.path.basename(download_url)
|
29 |
+
llm_temp_file_path = os.path.join("model", llm_filename)
|
30 |
+
|
31 |
+
if os.path.exists(llm_temp_file_path):
|
32 |
+
print("Model already available")
|
33 |
+
else:
|
34 |
+
response = requests.get(download_url, stream=True)
|
35 |
+
if response.status_code == 200:
|
36 |
+
with open(llm_temp_file_path, 'wb') as f:
|
37 |
+
for chunk in response.iter_content(chunk_size=1024):
|
38 |
+
if chunk:
|
39 |
+
f.write(chunk)
|
40 |
+
|
41 |
+
print("Download completed")
|
42 |
+
else:
|
43 |
+
print(f"Model download completed {response.status_code}")
|
44 |
+
|
45 |
+
# define model pipeline with llama-cpp
|
46 |
+
def initialize_llm(llm_model):
|
47 |
+
model_path = ""
|
48 |
+
if llm_model == llm_name:
|
49 |
+
model_path = "model/Q4_K_M.gguf"
|
50 |
+
download_llms(llm_model)
|
51 |
+
llm = LlamaCpp(
|
52 |
+
model_path=model_path,
|
53 |
+
# temperature=temperature,
|
54 |
+
# max_tokens=256,
|
55 |
+
# top_p=1,
|
56 |
+
# top_k= top_k,
|
57 |
+
n_ctx=1024,
|
58 |
+
verbose=False
|
59 |
+
)
|
60 |
+
return llm
|
61 |
+
|
62 |
+
llm = initialize_llm(llm_name)
|
63 |
+
|
64 |
+
# format prompt as per the chat template on the official model page: https://huggingface.co/google/gemma-7b-it
|
65 |
+
def format_prompt(input_text, history):
|
66 |
+
system_prompt = "You are a helpful AI assistant. You are truthful in your response."
|
67 |
+
prompt = ""
|
68 |
+
if history:
|
69 |
+
for previous_prompt, response in history:
|
70 |
+
prompt += f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{previous_prompt}<|im_end|>\n<|im_start|>assistant\n{response}<|im_end|>"
|
71 |
+
# <start_of_turn>user
|
72 |
+
# {previous_prompt}<end_of_turn>
|
73 |
+
# <start_of_turn>model
|
74 |
+
# {response}<end_of_turn>
|
75 |
+
prompt += f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant"
|
76 |
+
# <start_of_turn>user
|
77 |
+
# {input_text}<end_of_turn>
|
78 |
+
# <start_of_turn>model"""
|
79 |
+
return prompt
|
80 |
+
|
81 |
+
def generate(prompt, history, max_new_tokens=256): # temperature=0.95, top_p=0.9, repetition_penalty=1.0
|
82 |
+
if not history:
|
83 |
+
history = []
|
84 |
+
|
85 |
+
# temperature = float(temperature)
|
86 |
+
# top_p = float(top_p)
|
87 |
+
|
88 |
+
kwargs = dict(
|
89 |
+
# temperature=temperature,
|
90 |
+
max_tokens=max_new_tokens,
|
91 |
+
# top_p=top_p,
|
92 |
+
# repetition_penalty=repetition_penalty,
|
93 |
+
# do_sample=True,
|
94 |
+
stop=["<|im_end|>"]
|
95 |
+
)
|
96 |
+
|
97 |
+
formatted_prompt = format_prompt(prompt, history)
|
98 |
+
|
99 |
+
# response = llm(formatted_prompt, **kwargs, stream=True)
|
100 |
+
# output = ""
|
101 |
+
# for chunk in response:
|
102 |
+
# output += chunk.token.text
|
103 |
+
# yield output
|
104 |
+
# return output
|
105 |
+
|
106 |
+
response = llm(formatted_prompt, **kwargs)
|
107 |
+
return response['choices'][0]['text']
|
108 |
+
|
109 |
+
chatbot = gr.Chatbot(height=500)
|
110 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
111 |
+
gr.HTML("<center><h1>Google Gemma 7B IT</h1><center>")
|
112 |
+
gr.ChatInterface(
|
113 |
+
generate,
|
114 |
+
chatbot=chatbot,
|
115 |
+
retry_btn=None,
|
116 |
+
undo_btn=None,
|
117 |
+
clear_btn="Clear",
|
118 |
+
description="This AI agent is using the MuntasirHossain/Meta-Llama-3-8B-OpenOrca-GGUF model for text-generation",
|
119 |
+
# additional_inputs=additional_inputs,
|
120 |
+
examples=[["Explain artificial intelligence in a few lines."]]
|
121 |
+
)
|
122 |
+
demo.queue().launch()
|