sumanthkv commited on
Commit
9c2708e
·
verified ·
1 Parent(s): a5c9a00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -139
app.py CHANGED
@@ -1,216 +1,159 @@
1
  import gradio as gr
2
  import os
3
- api_token = os.getenv("HF_TOKEN")
4
-
5
-
6
- from langchain_community.vectorstores import FAISS
7
  from langchain_community.document_loaders import PyPDFLoader
8
  from langchain.text_splitter import RecursiveCharacterTextSplitter
9
- from langchain_community.vectorstores import Chroma
10
  from langchain.chains import ConversationalRetrievalChain
11
  from langchain_community.embeddings import HuggingFaceEmbeddings
12
- from langchain_community.llms import HuggingFacePipeline
13
- from langchain.chains import ConversationChain
14
- from langchain.memory import ConversationBufferMemory
15
  from langchain_community.llms import HuggingFaceEndpoint
16
- import torch
 
 
 
 
17
 
18
- list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
 
19
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
20
 
 
 
 
21
  # Load and split PDF document
22
  def load_doc(list_file_path):
23
- # Processing for one document only
24
- # loader = PyPDFLoader(file_path)
25
- # pages = loader.load()
26
  loaders = [PyPDFLoader(x) for x in list_file_path]
27
  pages = []
28
  for loader in loaders:
29
  pages.extend(loader.load())
30
- text_splitter = RecursiveCharacterTextSplitter(
31
- chunk_size = 1024,
32
- chunk_overlap = 64
33
- )
34
  doc_splits = text_splitter.split_documents(pages)
35
  return doc_splits
36
 
37
- # Create vector database
38
  def create_db(splits):
39
  embeddings = HuggingFaceEmbeddings()
40
- vectordb = FAISS.from_documents(splits, embeddings)
 
 
 
 
 
41
  return vectordb
42
 
43
-
44
  # Initialize langchain LLM chain
45
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
46
- if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
47
- llm = HuggingFaceEndpoint(
48
- repo_id=llm_model,
49
- huggingfacehub_api_token = api_token,
50
- temperature = temperature,
51
- max_new_tokens = max_tokens,
52
- top_k = top_k,
53
- )
54
- else:
55
- llm = HuggingFaceEndpoint(
56
- huggingfacehub_api_token = api_token,
57
- repo_id=llm_model,
58
- temperature = temperature,
59
- max_new_tokens = max_tokens,
60
- top_k = top_k,
61
- )
62
-
63
- memory = ConversationBufferMemory(
64
- memory_key="chat_history",
65
- output_key='answer',
66
- return_messages=True
67
  )
68
-
69
- retriever=vector_db.as_retriever()
 
70
  qa_chain = ConversationalRetrievalChain.from_llm(
71
  llm,
72
  retriever=retriever,
73
- chain_type="stuff",
74
  memory=memory,
75
  return_source_documents=True,
76
- verbose=False,
77
  )
78
  return qa_chain
79
 
80
- # Initialize database
81
  def initialize_database(list_file_obj, progress=gr.Progress()):
82
- # Create a list of documents (when valid)
83
  list_file_path = [x.name for x in list_file_obj if x is not None]
84
- # Load document and create splits
85
  doc_splits = load_doc(list_file_path)
86
- # Create or load vector database
87
  vector_db = create_db(doc_splits)
88
- return vector_db, "Database created!"
89
 
90
  # Initialize LLM
91
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
92
- # print("llm_option",llm_option)
93
  llm_name = list_llm[llm_option]
94
- print("llm_name: ",llm_name)
95
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
  return qa_chain, "QA chain initialized. Chatbot is ready!"
97
 
98
-
99
  def format_chat_history(message, chat_history):
100
  formatted_chat_history = []
101
  for user_message, bot_message in chat_history:
102
  formatted_chat_history.append(f"User: {user_message}")
103
  formatted_chat_history.append(f"Assistant: {bot_message}")
104
  return formatted_chat_history
105
-
106
 
 
107
  def conversation(qa_chain, message, history):
108
  formatted_chat_history = format_chat_history(message, history)
109
- # Generate response using QA chain
110
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
111
  response_answer = response["answer"]
112
- if response_answer.find("Helpful Answer:") != -1:
113
- response_answer = response_answer.split("Helpful Answer:")[-1]
114
  response_sources = response["source_documents"]
115
  response_source1 = response_sources[0].page_content.strip()
116
  response_source2 = response_sources[1].page_content.strip()
117
  response_source3 = response_sources[2].page_content.strip()
118
- # Langchain sources are zero-based
119
  response_source1_page = response_sources[0].metadata["page"] + 1
120
  response_source2_page = response_sources[1].metadata["page"] + 1
121
  response_source3_page = response_sources[2].metadata["page"] + 1
122
- # Append user message and response to chat history
123
  new_history = history + [(message, response_answer)]
124
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
125
-
126
-
127
- def upload_file(file_obj):
128
- list_file_path = []
129
- for idx, file in enumerate(file_obj):
130
- file_path = file_obj.name
131
- list_file_path.append(file_path)
132
- return list_file_path
133
-
134
 
 
135
  def demo():
136
- # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
137
- with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
138
  vector_db = gr.State()
139
  qa_chain = gr.State()
140
  gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
- gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
- <b>Please do not upload confidential documents.</b>
143
- """)
144
  with gr.Row():
145
- with gr.Column(scale = 86):
146
  gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
- with gr.Row():
148
- document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
- with gr.Row():
150
- db_btn = gr.Button("Create vector database")
151
- with gr.Row():
152
- db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
- gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
154
- with gr.Row():
155
- llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
156
- with gr.Row():
157
- with gr.Accordion("LLM input parameters", open=False):
158
- with gr.Row():
159
- slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
160
- with gr.Row():
161
- slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
162
- with gr.Row():
163
- slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
164
- with gr.Row():
165
- qachain_btn = gr.Button("Initialize Question Answering Chatbot")
166
- with gr.Row():
167
- llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
-
169
- with gr.Column(scale = 200):
170
  gr.Markdown("<b>Step 2 - Chat with your Document</b>")
171
  chatbot = gr.Chatbot(height=505)
172
- with gr.Accordion("Relevent context from the source document", open=False):
173
- with gr.Row():
174
- doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
175
- source1_page = gr.Number(label="Page", scale=1)
176
- with gr.Row():
177
- doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
178
- source2_page = gr.Number(label="Page", scale=1)
179
- with gr.Row():
180
- doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
181
- source3_page = gr.Number(label="Page", scale=1)
182
- with gr.Row():
183
- msg = gr.Textbox(placeholder="Ask a question", container=True)
184
- with gr.Row():
185
- submit_btn = gr.Button("Submit")
186
- clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
-
188
- # Preprocessing events
189
- db_btn.click(initialize_database, \
190
- inputs=[document], \
191
- outputs=[vector_db, db_progress])
192
- qachain_btn.click(initialize_LLM, \
193
- inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
194
- outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
195
- inputs=None, \
196
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
197
- queue=False)
198
-
199
- # Chatbot events
200
- msg.submit(conversation, \
201
- inputs=[qa_chain, msg, chatbot], \
202
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
203
- queue=False)
204
- submit_btn.click(conversation, \
205
- inputs=[qa_chain, msg, chatbot], \
206
- outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
207
- queue=False)
208
- clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
- inputs=None, \
210
- outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
- queue=False)
212
  demo.queue().launch(debug=True)
213
 
214
-
215
  if __name__ == "__main__":
216
- demo()
 
1
  import gradio as gr
2
  import os
3
+ from langchain_community.vectorstores import FAISS, Chroma
 
 
 
4
  from langchain_community.document_loaders import PyPDFLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
 
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
 
 
8
  from langchain_community.llms import HuggingFaceEndpoint
9
+ from langchain.memory import ConversationBufferMemory
10
+ from pathlib import Path
11
+
12
+ # Set environment variable for Hugging Face API token
13
+ api_token = os.getenv("HF_TOKEN")
14
 
15
+ # LLM model options
16
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
17
  list_llm_simple = [os.path.basename(llm) for llm in list_llm]
18
 
19
+ # Set directory for persistent storage
20
+ default_persist_directory = './chroma_database/' # Ensure directory exists
21
+
22
  # Load and split PDF document
23
  def load_doc(list_file_path):
 
 
 
24
  loaders = [PyPDFLoader(x) for x in list_file_path]
25
  pages = []
26
  for loader in loaders:
27
  pages.extend(loader.load())
28
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
 
 
 
29
  doc_splits = text_splitter.split_documents(pages)
30
  return doc_splits
31
 
32
+ # Create or update vector database with Chroma and persistence
33
  def create_db(splits):
34
  embeddings = HuggingFaceEmbeddings()
35
+ vectordb = Chroma.from_documents(
36
+ documents=splits,
37
+ embedding=embeddings,
38
+ persist_directory=default_persist_directory # Set persistence directory
39
+ )
40
+ vectordb.persist() # Ensure data is saved to chroma.sqlite3
41
  return vectordb
42
 
 
43
  # Initialize langchain LLM chain
44
  def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
45
+ llm = HuggingFaceEndpoint(
46
+ repo_id=llm_model,
47
+ huggingfacehub_api_token=api_token,
48
+ temperature=temperature,
49
+ max_new_tokens=max_tokens,
50
+ top_k=top_k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  )
52
+
53
+ memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True)
54
+ retriever = vector_db.as_retriever()
55
  qa_chain = ConversationalRetrievalChain.from_llm(
56
  llm,
57
  retriever=retriever,
58
+ chain_type="stuff",
59
  memory=memory,
60
  return_source_documents=True,
61
+ verbose=False
62
  )
63
  return qa_chain
64
 
65
+ # Initialize database with persistence
66
  def initialize_database(list_file_obj, progress=gr.Progress()):
 
67
  list_file_path = [x.name for x in list_file_obj if x is not None]
 
68
  doc_splits = load_doc(list_file_path)
 
69
  vector_db = create_db(doc_splits)
70
+ return vector_db, "Database created and persisted!"
71
 
72
  # Initialize LLM
73
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
 
74
  llm_name = list_llm[llm_option]
 
75
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
76
  return qa_chain, "QA chain initialized. Chatbot is ready!"
77
 
 
78
  def format_chat_history(message, chat_history):
79
  formatted_chat_history = []
80
  for user_message, bot_message in chat_history:
81
  formatted_chat_history.append(f"User: {user_message}")
82
  formatted_chat_history.append(f"Assistant: {bot_message}")
83
  return formatted_chat_history
 
84
 
85
+ # Conversation handling
86
  def conversation(qa_chain, message, history):
87
  formatted_chat_history = format_chat_history(message, history)
 
88
  response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
89
  response_answer = response["answer"]
 
 
90
  response_sources = response["source_documents"]
91
  response_source1 = response_sources[0].page_content.strip()
92
  response_source2 = response_sources[1].page_content.strip()
93
  response_source3 = response_sources[2].page_content.strip()
 
94
  response_source1_page = response_sources[0].metadata["page"] + 1
95
  response_source2_page = response_sources[1].metadata["page"] + 1
96
  response_source3_page = response_sources[2].metadata["page"] + 1
 
97
  new_history = history + [(message, response_answer)]
98
  return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
 
 
 
 
 
 
 
 
 
99
 
100
+ # Gradio UI setup
101
  def demo():
102
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
 
103
  vector_db = gr.State()
104
  qa_chain = gr.State()
105
  gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
106
+ gr.Markdown("""<b>Query your PDF documents!</b> This AI agent performs retrieval augmented generation (RAG) on PDF documents. \
107
+ Please do not upload confidential documents.""")
108
+
109
  with gr.Row():
110
+ with gr.Column(scale=86):
111
  gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
112
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
113
+ db_btn = gr.Button("Create vector database")
114
+ db_progress = gr.Textbox(value="Not initialized", show_label=False)
115
+
116
+ gr.Markdown("<style>body { font-size: 16px; }</style><b>Select LLM and input parameters</b>")
117
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
118
+ with gr.Accordion("LLM input parameters", open=False):
119
+ slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
120
+ slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
121
+ slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
122
+
123
+ qachain_btn = gr.Button("Initialize Question Answering Chatbot")
124
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False)
125
+
126
+ with gr.Column(scale=200):
 
 
 
 
 
 
 
 
127
  gr.Markdown("<b>Step 2 - Chat with your Document</b>")
128
  chatbot = gr.Chatbot(height=505)
129
+ with gr.Accordion("Relevant context from the source document", open=False):
130
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
131
+ source1_page = gr.Number(label="Page", scale=1)
132
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
133
+ source2_page = gr.Number(label="Page", scale=1)
134
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
135
+ source3_page = gr.Number(label="Page", scale=1)
136
+
137
+ msg = gr.Textbox(placeholder="Ask a question", container=True)
138
+ submit_btn = gr.Button("Submit")
139
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
140
+
141
+ # Set up Gradio events
142
+ db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_progress])
143
+ qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
144
+ outputs=[qa_chain, llm_progress]).then(lambda: [None, "", 0, "", 0, "", 0],
145
+ inputs=None,
146
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
147
+ queue=False)
148
+
149
+ msg.submit(conversation, inputs=[qa_chain, msg, chatbot],
150
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
151
+ submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot],
152
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
153
+ clear_btn.click(lambda: [None, "", 0, "", 0, "", 0],
154
+ inputs=None,
155
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  demo.queue().launch(debug=True)
157
 
 
158
  if __name__ == "__main__":
159
+ demo()