Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import subprocess
|
|
|
2 |
subprocess.run(["pip", "install", "transformers"])
|
3 |
-
subprocess.run(["pip", "install", "torchaudio"])
|
4 |
|
5 |
import gradio as gr
|
6 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
@@ -13,7 +14,7 @@ model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-it
|
|
13 |
# Function to perform ASR on audio data
|
14 |
def transcribe_audio(audio_data):
|
15 |
# Convert audio data to mono and normalize
|
16 |
-
audio_data = torchaudio.
|
17 |
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
|
18 |
|
19 |
# Resample if needed (Wav2Vec2 model requires 16 kHz sampling rate)
|
|
|
1 |
import subprocess
|
2 |
+
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
3 |
subprocess.run(["pip", "install", "transformers"])
|
4 |
+
subprocess.run(["pip", "install", "torchaudio", "--upgrade"])
|
5 |
|
6 |
import gradio as gr
|
7 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
14 |
# Function to perform ASR on audio data
|
15 |
def transcribe_audio(audio_data):
|
16 |
# Convert audio data to mono and normalize
|
17 |
+
audio_data = torchaudio.transforms.Mono()(audio_data)
|
18 |
audio_data = torchaudio.functional.gain(audio_data, gain_db=5.0)
|
19 |
|
20 |
# Resample if needed (Wav2Vec2 model requires 16 kHz sampling rate)
|