Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import subprocess
|
2 |
-
|
3 |
|
4 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
5 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
@@ -8,50 +8,35 @@ subprocess.run(["pip", "install", "numpy"])
|
|
8 |
subprocess.run(["pip", "install", "pydub"])
|
9 |
subprocess.run(["pip", "install", "openai"])
|
10 |
|
11 |
-
import
|
12 |
-
import openai
|
13 |
-
import soundfile as sf
|
14 |
-
import numpy as np
|
15 |
-
from pydub import AudioSegment
|
16 |
-
from io import BytesIO
|
17 |
-
|
18 |
-
# Set your OpenAI API key
|
19 |
-
openai.api_key = "YOUR_OPENAI_API_KEY"
|
20 |
-
|
21 |
-
# Whisper ASR model
|
22 |
-
whisper_model = "whisper-small"
|
23 |
-
|
24 |
-
# Define the Gradio interface
|
25 |
-
iface = gr.Interface(
|
26 |
-
fn=None, # To be defined later
|
27 |
-
inputs=gr.Audio(),
|
28 |
-
outputs=gr.Textbox(),
|
29 |
-
live=True,
|
30 |
-
)
|
31 |
-
|
32 |
-
# Define the function for ASR
|
33 |
-
def transcribe_audio(audio_data):
|
34 |
-
# Convert the audio data to a suitable format
|
35 |
-
audio = AudioSegment.from_file(BytesIO(audio_data), format="wav")
|
36 |
-
audio.export("temp.wav", format="wav")
|
37 |
-
|
38 |
-
# Load the audio file using soundfile
|
39 |
-
audio_array, _ = sf.read("temp.wav")
|
40 |
-
|
41 |
-
# Perform ASR using OpenAI's Whisper
|
42 |
-
response = openai.Completion.create(
|
43 |
-
engine=whisper_model,
|
44 |
-
audio_input=audio_array.tolist(),
|
45 |
-
content_type="audio/wav",
|
46 |
-
)
|
47 |
-
|
48 |
-
# Extract the transcribed text from the response
|
49 |
-
transcription = response["choices"][0]["text"].strip()
|
50 |
|
51 |
-
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
#
|
57 |
-
|
|
|
|
1 |
import subprocess
|
2 |
+
|
3 |
|
4 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
5 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
|
|
8 |
subprocess.run(["pip", "install", "pydub"])
|
9 |
subprocess.run(["pip", "install", "openai"])
|
10 |
|
11 |
+
import subprocess
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
subprocess.run(["pip", "install", "datasets"])
|
14 |
+
subprocess.run(["pip", "install", "transformers"])
|
15 |
+
subprocess.run(["pip", "install", "torch", "torchvision", "torchaudio", "-f", "https://download.pytorch.org/whl/torch_stable.html"])
|
16 |
|
17 |
+
import gradio as gr
|
18 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
19 |
+
|
20 |
+
# Load model and processor
|
21 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-large")
|
22 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
|
23 |
+
model.config.forced_decoder_ids = None
|
24 |
+
|
25 |
+
# Custom preprocessing function
|
26 |
+
def preprocess_audio(audio_data):
|
27 |
+
# Apply any custom preprocessing to the audio data here if needed
|
28 |
+
return processor(audio_data, return_tensors="pt").input_features
|
29 |
+
|
30 |
+
# Function to perform ASR on audio data
|
31 |
+
def transcribe_audio(input_features):
|
32 |
+
# Generate token ids
|
33 |
+
predicted_ids = model.generate(input_features)
|
34 |
+
|
35 |
+
# Decode token ids to text
|
36 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
37 |
+
|
38 |
+
return transcription[0]
|
39 |
|
40 |
+
# Create Gradio interface
|
41 |
+
audio_input = gr.Audio(preprocess=preprocess_audio)
|
42 |
+
gr.Interface(fn=transcribe_audio, inputs=audio_input, outputs="text").launch()
|