Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,43 +3,55 @@ import gradio as gr # Add this import statement
|
|
3 |
|
4 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
5 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
6 |
-
subprocess.run(["pip", "install", "
|
7 |
-
subprocess.run(["pip", "install", "
|
8 |
-
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
-
import
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
whisper_italian_asr = pipeline("automatic-speech-recognition", model=model_name, device=0)
|
18 |
|
|
|
|
|
19 |
|
20 |
-
# Define the
|
21 |
-
|
22 |
-
#
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Perform ASR using
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
|
34 |
-
audio_input = gr.Audio(preprocess=torchaudio.transforms.Resample(orig_freq=44100, new_freq=16000))
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
inputs=audio_input,
|
39 |
-
outputs="text",
|
40 |
-
live=True,
|
41 |
-
interpretation="default"
|
42 |
-
)
|
43 |
|
44 |
# Launch the Gradio app
|
45 |
-
iface.launch(
|
|
|
3 |
|
4 |
subprocess.run(["python", "-m", "pip", "install", "--upgrade", "pip"])
|
5 |
subprocess.run(["pip", "install", "gradio", "--upgrade"])
|
6 |
+
subprocess.run(["pip", "install", "soundfile"])
|
7 |
+
subprocess.run(["pip", "install", "numpy"])
|
8 |
+
subprocess.run(["pip", "install", "pydub"])
|
9 |
+
subprocess.run(["pip", "install", "openai"])
|
10 |
|
11 |
import gradio as gr
|
12 |
+
import openai
|
13 |
+
import soundfile as sf
|
14 |
+
import numpy as np
|
15 |
+
from pydub import AudioSegment
|
16 |
+
from io import BytesIO
|
17 |
|
18 |
+
# Set your OpenAI API key
|
19 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
|
|
20 |
|
21 |
+
# Whisper ASR model
|
22 |
+
whisper_model = "whisper-small"
|
23 |
|
24 |
+
# Define the Gradio interface
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=None, # To be defined later
|
27 |
+
inputs=gr.Audio(),
|
28 |
+
outputs=gr.Textbox(),
|
29 |
+
live=True,
|
30 |
+
)
|
31 |
|
32 |
+
# Define the function for ASR
|
33 |
+
def transcribe_audio(audio_data):
|
34 |
+
# Convert the audio data to a suitable format
|
35 |
+
audio = AudioSegment.from_file(BytesIO(audio_data), format="wav")
|
36 |
+
audio.export("temp.wav", format="wav")
|
37 |
+
|
38 |
+
# Load the audio file using soundfile
|
39 |
+
audio_array, _ = sf.read("temp.wav")
|
40 |
|
41 |
+
# Perform ASR using OpenAI's Whisper
|
42 |
+
response = openai.Completion.create(
|
43 |
+
engine=whisper_model,
|
44 |
+
audio_input=audio_array.tolist(),
|
45 |
+
content_type="audio/wav",
|
46 |
+
)
|
47 |
|
48 |
+
# Extract the transcribed text from the response
|
49 |
+
transcription = response["choices"][0]["text"].strip()
|
50 |
|
51 |
+
return transcription
|
|
|
52 |
|
53 |
+
# Set the function for the Gradio interface
|
54 |
+
iface.fn = transcribe_audio
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Launch the Gradio app
|
57 |
+
iface.launch()
|