Mushfi commited on
Commit
0495d53
·
verified ·
1 Parent(s): de5d00b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -0
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from transformers import TFAutoModel, AutoTokenizer
4
+ import os
5
+ import numpy as np
6
+
7
+ model_name = 'cardiffnlp/twitter-roberta-base-sentiment-latest'
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = tf.keras.models.load_model(
10
+ "/content/SpecX2/model.h5",
11
+ custom_objects={
12
+ 'TFRobertaModel': TFAutoModel.from_pretrained(model_name)
13
+ }
14
+ )
15
+
16
+ labels = [
17
+ 'Cardiologist',
18
+ 'Dermatologist',
19
+ 'ENT Specialist',
20
+ 'Gastro-enterologist',
21
+ 'General-Physicians',
22
+ 'Neurologist/Gastro-enterologist',
23
+ 'Ophthalmologist',
24
+ 'Orthopedist',
25
+ 'Psychiatrist',
26
+ 'Respirologist',
27
+ 'Rheumatologist',
28
+ 'Rheumatologist/Gastro-enterologist',
29
+ 'Rheumatologist/Orthopedist',
30
+ 'Surgeon'
31
+ ]
32
+ seq_len = 152
33
+
34
+ def prep_data(text):
35
+ tokens = tokenizer(
36
+ text, max_length=seq_len, truncation=True,
37
+ padding='max_length',
38
+ add_special_tokens=True,
39
+ return_tensors='tf'
40
+ )
41
+ return {
42
+ 'input_ids': tokens['input_ids'],
43
+ 'attention_mask': tokens['attention_mask']
44
+ }
45
+
46
+ def inference(text):
47
+ encoded_text = prep_data(text)
48
+ probs = model.predict_on_batch(encoded_text)
49
+ probabilities = {i:j for i,j in zip(labels, list(probs.flatten()))}
50
+ return probabilities
51
+
52
+ css = """
53
+ textarea {
54
+ background-color: #00000000;
55
+ border: 1px solid #6366f160;
56
+ color: #000000;
57
+ }
58
+ """
59
+ with gr.Blocks(title="SpecX", css=css, theme=gr.themes.Soft()) as demo:
60
+ with gr.Row():
61
+ textmd = gr.Markdown('''
62
+ <div style="margin: 50px 0;"></div>
63
+
64
+ <h1 style="width:100%; text-align: center;">SpecX: Find the Right Specialist For Your Symptoms!</h1>
65
+
66
+ ''')
67
+ with gr.Row():
68
+ with gr.Column(scale=1, min_width=600):
69
+ text_box = gr.Textbox(label="Explain your problem in one sentence.")
70
+ submit_btn = gr.Button("Submit", elem_id="warningk", variant='primary')
71
+ examples = gr.Examples(examples=[
72
+ "When I remember her I feel down",
73
+ "The area around my heart doesn't feel good.",
74
+ "I have a split on my thumb that will not heal."
75
+ ], inputs=text_box)
76
+ label = gr.Label(num_top_classes=4, label="Recommended Specialist")
77
+ submit_btn.click(inference, inputs=text_box, outputs=label)
78
+
79
+ demo.launch()