Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +133 -0
- gradio.css +8 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#app6.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from torchvision import transforms
|
6 |
+
from ultralyticsplus import YOLO, render_result
|
7 |
+
# import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
torch.hub.download_url_to_file(
|
11 |
+
'https://i.postimg.cc/Y0V4KwMf/NSTA-Test-IMG-3276.jpg', 'A.jpg')
|
12 |
+
torch.hub.download_url_to_file(
|
13 |
+
'https://i.postimg.cc/pTshCFSS/NSTB-Test-IMG-1472.jpg', 'B.jpg')
|
14 |
+
torch.hub.download_url_to_file(
|
15 |
+
'https://i.postimg.cc/mkhc5rfg/NSTC-Test-IMG-0118.jpg', 'C.jpg')
|
16 |
+
|
17 |
+
def detect_objects(image_path):
|
18 |
+
# Open the image file and resize it
|
19 |
+
image = Image.open(image_path)
|
20 |
+
resized_image = image.resize((1024, 768))
|
21 |
+
|
22 |
+
# Load the model
|
23 |
+
# model_path = ('code/runs/train45/best.pt')
|
24 |
+
model_path = ('MvitHYF/v8mvitcocoaseed2024')
|
25 |
+
model = YOLO(model_path)
|
26 |
+
# model = YOLO('MvitHYF/v8mvitcocoaseed2024')
|
27 |
+
|
28 |
+
# Set model parameters
|
29 |
+
model.overrides['conf'] = 0.35 # NMS confidence threshold
|
30 |
+
model.overrides['iou'] = 0.45 # NMS IoU threshold
|
31 |
+
model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
32 |
+
model.overrides['max_det'] = 1000 # maximum number of detections per image
|
33 |
+
|
34 |
+
# Perform inference
|
35 |
+
results = model.predict(resized_image)
|
36 |
+
|
37 |
+
#debug check count
|
38 |
+
# print("see")
|
39 |
+
# print(results)
|
40 |
+
cls = results[0].boxes.cls
|
41 |
+
# print(cls)
|
42 |
+
strcls = str(cls)
|
43 |
+
# print(type(strcls))
|
44 |
+
# print(strcls)
|
45 |
+
count_classa = strcls.count('0')
|
46 |
+
# print('Count of classA:', count_classa)
|
47 |
+
count_classb = strcls.count('1')
|
48 |
+
# print('Count of classB', count_classb)
|
49 |
+
count_classc = strcls.count('2')
|
50 |
+
# print('Count of classC:', count_classc)
|
51 |
+
intcount_classa = int(count_classa)
|
52 |
+
intcount_classb = int(count_classb)
|
53 |
+
intcount_classc = int(count_classc)
|
54 |
+
total = intcount_classa + intcount_classb + intcount_classc
|
55 |
+
# print("end see")
|
56 |
+
|
57 |
+
# class_counts = {'A': 0, 'B': 0, 'C': 0}
|
58 |
+
|
59 |
+
# for result in results:
|
60 |
+
# # Example to access class_id, adapt based on your results structure
|
61 |
+
# class_id = result[-1]
|
62 |
+
# if class_id == 0: # if the class_id corresponds to class A
|
63 |
+
# class_counts['A'] += 1
|
64 |
+
# elif class_id == 1: # if the class_id corresponds to class B
|
65 |
+
# class_counts['B'] += 1
|
66 |
+
# elif class_id == 2: # if the class_id corresponds to class C
|
67 |
+
# class_counts['C'] += 1
|
68 |
+
|
69 |
+
#plot graph
|
70 |
+
# plot = np.array([intcount_classa, intcount_classb, intcount_classc])
|
71 |
+
# piegraph = plt.pie(plot)
|
72 |
+
|
73 |
+
# x = np.array(["A", "B", "C"])
|
74 |
+
# y = np.array([intcount_classa, intcount_classb, intcount_classc])
|
75 |
+
# plotbar = plt.bar(x,y)
|
76 |
+
|
77 |
+
gr.Image(label="Pie Graph")
|
78 |
+
# Format the output to print the counts
|
79 |
+
output_counts = f"Totoal cocoa seeds: {total}\nClass A: {count_classa} seeds\nClass B: {count_classb} seeds\nClass C: {count_classc} seeds"
|
80 |
+
|
81 |
+
# Render results
|
82 |
+
render = render_result(model=model, image=resized_image, result=results[0])
|
83 |
+
#return render, output_counts, plotbar
|
84 |
+
return render, output_counts
|
85 |
+
|
86 |
+
#csspath = 'code/yolov8newultlt/gradio.css'
|
87 |
+
|
88 |
+
with gr.Blocks(theme='ParityError/LimeFace') as demo:
|
89 |
+
with gr.Row(): #original Column
|
90 |
+
with gr.Row(): #original Column
|
91 |
+
example = [['A.jpg'],
|
92 |
+
['B.jpg'],
|
93 |
+
['C.jpg']]
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
gr.Interface(fn=detect_objects,
|
98 |
+
inputs=gr.Image(type="filepath", label="Upload an Image"),
|
99 |
+
outputs=[gr.Image(type="filepath", label="Result"), gr.Textbox(label="Detection Counts")],
|
100 |
+
title="YOLOv8 Cocoas Seed Classification",
|
101 |
+
description="Upload an image to detect objects using YOLO.",
|
102 |
+
#html = gr.HTML(value="<p>This is another paragraph123.</p>"),
|
103 |
+
examples = example,
|
104 |
+
#css=csspath,
|
105 |
+
)
|
106 |
+
with gr.Row():
|
107 |
+
with gr.Row():
|
108 |
+
# gr.HTML(value="<b>Class A</b> <p>Class A is the best from all 3 classes. It have the best of physical appreance eg. shape, size, texture</p>"),
|
109 |
+
gr.HTML(value="<dl> <dt><b>Class A</b></dt> <dd>Class A is the best from all 3 classes. It have the best of physical appreance eg. shape, size, texture</dd> </dl> <dt><b>Class B</b></dt> <dd>Class B most of the cocoa seed have physical appreance similar to class A. <br> But the size must me smaller and texture is not smmoth as class A</dd> <dt><b>Class C</b></dt> <dd>Class C is the worst from all 3 classes. Its the smallest, rough texter and have a irregular shape </dd> </dl></dl>")
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.queue().launch(share=True)
|
113 |
+
|
114 |
+
# def load_css():
|
115 |
+
# with open(csspath, 'r') as file:
|
116 |
+
# css_content = file.read()
|
117 |
+
# return css_content
|
118 |
+
|
119 |
+
|
120 |
+
# Create the Gradio interface
|
121 |
+
# iface = gr.Interface(fn=detect_objects,
|
122 |
+
# inputs=gr.Image(type="filepath", label="Upload an Image"),
|
123 |
+
# outputs=gr.Image(type="filepath", label="Result"),
|
124 |
+
# description="Upload an image to detect objects using YOLO.",
|
125 |
+
# title="YOLOv8 Cocoa Seed Classification",
|
126 |
+
# examples=example,
|
127 |
+
# theme='ParityError/LimeFace',
|
128 |
+
# #css=load_css()
|
129 |
+
# )
|
130 |
+
|
131 |
+
# Launch the interface
|
132 |
+
# iface.launch()
|
133 |
+
# demo.queue().launch()
|
gradio.css
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* gradio.css */
|
2 |
+
|
3 |
+
/* Target the images within the gradio app */
|
4 |
+
img {
|
5 |
+
width: 1024px; /* Set width directly */
|
6 |
+
height: 768px; /* Set height directly */
|
7 |
+
margin: 10px; /* Optional: add some space around the images */
|
8 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.22.0
|
2 |
+
numpy==1.26.4
|
3 |
+
Pillow==10.2.0
|
4 |
+
torch==2.0.1
|
5 |
+
torchvision==0.15.2
|
6 |
+
ultralyticsplus==0.0.29
|