Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import random | |
import math | |
def MultiChannelSoftBinaryCrossEntropy(input, target, reduction='mean'): | |
''' | |
input: N x 38 x H x W --> 19N x 2 x H x W | |
target: N x 19 x H x W --> 19N x 1 x H x W | |
''' | |
input = input.view(-1, 2, input.size(2), input.size(3)) | |
target = target.view(-1, 1, input.size(2), input.size(3)) | |
logsoftmax = nn.LogSoftmax(dim=1) | |
if reduction == 'mean': | |
return torch.mean(torch.sum(-target * logsoftmax(input), dim=1)) | |
else: | |
return torch.sum(torch.sum(-target * logsoftmax(input), dim=1)) | |
class EdgeAwareLoss(): | |
def __init__(self, nc=2, loss_type="L1", reduction='mean'): | |
assert loss_type in ['L1', 'BCE'], "Undefined loss type: {}".format(loss_type) | |
self.nc = nc | |
self.loss_type = loss_type | |
self.kernelx = Variable(torch.Tensor([[1,0,-1],[2,0,-2],[1,0,-1]]).cuda()) | |
self.kernelx = self.kernelx.repeat(nc,1,1,1) | |
self.kernely = Variable(torch.Tensor([[1,2,1],[0,0,0],[-1,-2,-1]]).cuda()) | |
self.kernely = self.kernely.repeat(nc,1,1,1) | |
self.bias = Variable(torch.zeros(nc).cuda()) | |
self.reduction = reduction | |
if loss_type == 'L1': | |
self.loss = nn.SmoothL1Loss(reduction=reduction) | |
elif loss_type == 'BCE': | |
self.loss = self.bce2d | |
def bce2d(self, input, target): | |
assert not target.requires_grad | |
beta = 1 - torch.mean(target) | |
weights = 1 - beta + (2 * beta - 1) * target | |
loss = nn.functional.binary_cross_entropy(input, target, weights, reduction=self.reduction) | |
return loss | |
def get_edge(self, var): | |
assert var.size(1) == self.nc, \ | |
"input size at dim 1 should be consistent with nc, {} vs {}".format(var.size(1), self.nc) | |
outputx = nn.functional.conv2d(var, self.kernelx, bias=self.bias, padding=1, groups=self.nc) | |
outputy = nn.functional.conv2d(var, self.kernely, bias=self.bias, padding=1, groups=self.nc) | |
eps=1e-05 | |
return torch.sqrt(outputx.pow(2) + outputy.pow(2) + eps).mean(dim=1, keepdim=True) | |
def __call__(self, input, target): | |
size = target.shape[2:4] | |
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True) | |
target_edge = self.get_edge(target) | |
if self.loss_type == 'L1': | |
return self.loss(self.get_edge(input), target_edge) | |
elif self.loss_type == 'BCE': | |
raise NotImplemented | |
#target_edge = torch.sign(target_edge - 0.1) | |
#pred = self.get_edge(nn.functional.sigmoid(input)) | |
#return self.loss(pred, target_edge) | |
def KLD(mean, logvar): | |
return -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp()) | |
class DiscreteLoss(nn.Module): | |
def __init__(self, nbins, fmax): | |
super().__init__() | |
self.loss = nn.CrossEntropyLoss() | |
assert nbins % 2 == 1, "nbins should be odd" | |
self.nbins = nbins | |
self.fmax = fmax | |
self.step = 2 * fmax / float(nbins) | |
def tobin(self, target): | |
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3) | |
quantized_target = torch.floor((target + self.fmax) / self.step) | |
return quantized_target.type(torch.cuda.LongTensor) | |
def __call__(self, input, target): | |
size = target.shape[2:4] | |
if input.shape[2] != size[0] or input.shape[3] != size[1]: | |
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True) | |
target = self.tobin(target) | |
assert input.size(1) == self.nbins * 2 | |
# print(target.shape) | |
# print(input.shape) | |
# print(torch.max(target)) | |
target[target>=99]=98 # odd bugs of the training loss. We have [0 ~ 99] in GT flow, but nbins = 99 | |
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...]) | |
class MultiDiscreteLoss(): | |
def __init__(self, nbins=19, fmax=47.5, reduction='mean', xy_weight=(1., 1.), quantize_strategy='linear'): | |
self.loss = nn.CrossEntropyLoss(reduction=reduction) | |
assert nbins % 2 == 1, "nbins should be odd" | |
self.nbins = nbins | |
self.fmax = fmax | |
self.step = 2 * fmax / float(nbins) | |
self.x_weight, self.y_weight = xy_weight | |
self.quantize_strategy = quantize_strategy | |
def tobin(self, target): | |
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3) | |
if self.quantize_strategy == "linear": | |
quantized_target = torch.floor((target + self.fmax) / self.step) | |
elif self.quantize_strategy == "quadratic": | |
ind = target.data > 0 | |
quantized_target = target.clone() | |
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.) | |
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.) | |
return quantized_target.type(torch.cuda.LongTensor) | |
def __call__(self, input, target): | |
size = target.shape[2:4] | |
target = self.tobin(target) | |
if isinstance(input, list): | |
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input] | |
return sum([self.x_weight * self.loss(input[k][:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[k][:,self.nbins:,...], target[:,1,...]) for k in range(len(input))]) / float(len(input)) | |
else: | |
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True) | |
return self.x_weight * self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.y_weight * self.loss(input[:,self.nbins:,...], target[:,1,...]) | |
class MultiL1Loss(): | |
def __init__(self, reduction='mean'): | |
self.loss = nn.SmoothL1Loss(reduction=reduction) | |
def __call__(self, input, target): | |
size = target.shape[2:4] | |
if isinstance(input, list): | |
input = [nn.functional.interpolate(ip, size=size, mode="bilinear", align_corners=True) for ip in input] | |
return sum([self.loss(input[k], target) for k in range(len(input))]) / float(len(input)) | |
else: | |
input = nn.functional.interpolate(input, size=size, mode="bilinear", align_corners=True) | |
return self.loss(input, target) | |
class MultiMSELoss(): | |
def __init__(self): | |
self.loss = nn.MSELoss() | |
def __call__(self, predicts, targets): | |
loss = 0 | |
for predict, target in zip(predicts, targets): | |
loss += self.loss(predict, target) | |
return loss | |
class JointDiscreteLoss(): | |
def __init__(self, nbins=19, fmax=47.5, reduction='mean', quantize_strategy='linear'): | |
self.loss = nn.CrossEntropyLoss(reduction=reduction) | |
assert nbins % 2 == 1, "nbins should be odd" | |
self.nbins = nbins | |
self.fmax = fmax | |
self.step = 2 * fmax / float(nbins) | |
self.quantize_strategy = quantize_strategy | |
def tobin(self, target): | |
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3) | |
if self.quantize_strategy == "linear": | |
quantized_target = torch.floor((target + self.fmax) / self.step) | |
elif self.quantize_strategy == "quadratic": | |
ind = target.data > 0 | |
quantized_target = target.clone() | |
quantized_target[ind] = torch.floor(self.nbins * torch.sqrt(target[ind] / (4 * self.fmax)) + self.nbins / 2.) | |
quantized_target[~ind] = torch.floor(-self.nbins * torch.sqrt(-target[~ind] / (4 * self.fmax)) + self.nbins / 2.) | |
else: | |
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy)) | |
joint_target = quantized_target[:,0,:,:] * self.nbins + quantized_target[:,1,:,:] | |
return joint_target.type(torch.cuda.LongTensor) | |
def __call__(self, input, target): | |
target = self.tobin(target) | |
assert input.size(1) == self.nbins ** 2 | |
return self.loss(input, target) | |
class PolarDiscreteLoss(): | |
def __init__(self, abins=30, rbins=20, fmax=50., reduction='mean', ar_weight=(1., 1.), quantize_strategy='linear'): | |
self.loss = nn.CrossEntropyLoss(reduction=reduction) | |
self.fmax = fmax | |
self.rbins = rbins | |
self.abins = abins | |
self.a_weight, self.r_weight = ar_weight | |
self.quantize_strategy = quantize_strategy | |
def tobin(self, target): | |
indxneg = target.data[:,0,:,:] < 0 | |
eps = torch.zeros(target.data[:,0,:,:].size()).cuda() | |
epsind = target.data[:,0,:,:] == 0 | |
eps[epsind] += 1e-5 | |
angle = torch.atan(target.data[:,1,:,:] / (target.data[:,0,:,:] + eps)) | |
angle[indxneg] += np.pi | |
angle += np.pi / 2 # 0 to 2pi | |
angle = torch.clamp(angle, 0, 2 * np.pi - 1e-3) | |
radius = torch.sqrt(target.data[:,0,:,:] ** 2 + target.data[:,1,:,:] ** 2) | |
radius = torch.clamp(radius, 0, self.fmax - 1e-3) | |
quantized_angle = torch.floor(self.abins * angle / (2 * np.pi)) | |
if self.quantize_strategy == 'linear': | |
quantized_radius = torch.floor(self.rbins * radius / self.fmax) | |
elif self.quantize_strategy == 'quadratic': | |
quantized_radius = torch.floor(self.rbins * torch.sqrt(radius / self.fmax)) | |
else: | |
raise Exception("No such quantize strategy: {}".format(self.quantize_strategy)) | |
quantized_target = torch.autograd.Variable(torch.cat([torch.unsqueeze(quantized_angle, 1), torch.unsqueeze(quantized_radius, 1)], dim=1)) | |
return quantized_target.type(torch.cuda.LongTensor) | |
def __call__(self, input, target): | |
target = self.tobin(target) | |
assert (target >= 0).all() and (target[:,0,:,:] < self.abins).all() and (target[:,1,:,:] < self.rbins).all() | |
return self.a_weight * self.loss(input[:,:self.abins,...], target[:,0,...]) + self.r_weight * self.loss(input[:,self.abins:,...], target[:,1,...]) | |
class WeightedDiscreteLoss(): | |
def __init__(self, nbins=19, fmax=47.5, reduction='mean'): | |
self.loss = CrossEntropy2d(reduction=reduction) | |
assert nbins % 2 == 1, "nbins should be odd" | |
self.nbins = nbins | |
self.fmax = fmax | |
self.step = 2 * fmax / float(nbins) | |
self.weight = np.ones((nbins), dtype=np.float32) | |
self.weight[int(self.fmax / self.step)] = 0.01 | |
self.weight = torch.from_numpy(self.weight).cuda() | |
def tobin(self, target): | |
target = torch.clamp(target, -self.fmax + 1e-3, self.fmax - 1e-3) | |
return torch.floor((target + self.fmax) / self.step).type(torch.cuda.LongTensor) | |
def __call__(self, input, target): | |
target = self.tobin(target) | |
assert (target >= 0).all() and (target < self.nbins).all() | |
return self.loss(input[:,:self.nbins,...], target[:,0,...]) + self.loss(input[:,self.nbins:,...], target[:,1,...], self.weight) | |
class CrossEntropy2d(nn.Module): | |
def __init__(self, reduction='mean', ignore_label=-1): | |
super(CrossEntropy2d, self).__init__() | |
self.ignore_label = ignore_label | |
self.reduction = reduction | |
def forward(self, predict, target, weight=None): | |
""" | |
Args: | |
predict:(n, c, h, w) | |
target:(n, h, w) | |
weight (Tensor, optional): a manual rescaling weight given to each class. | |
If given, has to be a Tensor of size "nclasses" | |
""" | |
assert not target.requires_grad | |
assert predict.dim() == 4 | |
assert target.dim() == 3 | |
assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0)) | |
assert predict.size(2) == target.size(1), "{0} vs {1} ".format(predict.size(2), target.size(1)) | |
assert predict.size(3) == target.size(2), "{0} vs {1} ".format(predict.size(3), target.size(3)) | |
n, c, h, w = predict.size() | |
target_mask = (target >= 0) * (target != self.ignore_label) | |
target = target[target_mask] | |
predict = predict.transpose(1, 2).transpose(2, 3).contiguous() | |
predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c) | |
loss = F.cross_entropy(predict, target, weight=weight, reduction=self.reduction) | |
return loss | |
#class CrossPixelSimilarityLoss(): | |
# ''' | |
# Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py | |
# ''' | |
# def __init__(self, sigma=0.0036, sampling_size=512): | |
# self.sigma = sigma | |
# self.sampling_size = sampling_size | |
# self.epsilon = 1.0e-15 | |
# self.embed_norm = True # loss does not decrease no matter it is true or false. | |
# | |
# def __call__(self, embeddings, flows): | |
# ''' | |
# embedding: Variable Nx256xHxW (not hyper-column) | |
# flows: Variable Nx2xHxW | |
# ''' | |
# assert flows.size(1) == 2 | |
# | |
# # flow normalization | |
# positive_mask = (flows > 0) | |
# flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.) | |
# flows[positive_mask] = -flows[positive_mask] | |
# | |
# # embedding normalization | |
# if self.embed_norm: | |
# embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True) | |
# | |
# # Spatially random sampling (512 samples) | |
# flows_flatten = flows.view(flows.shape[0], 2, -1) | |
# random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda()) | |
# flows_sample = torch.index_select(flows_flatten, 2, random_locations) | |
# | |
# # K_f | |
# k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) - | |
# torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3, | |
# keepdim=False) ** 2 | |
# exp_k_f = torch.exp(-k_f / 2. / self.sigma) | |
# | |
# | |
# # mask | |
# eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda()) | |
# mask = torch.ones_like(exp_k_f) - eye | |
# | |
# # S_f | |
# masked_exp_k_f = torch.mul(mask, exp_k_f) + eye | |
# s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True) | |
# | |
# # K_theta | |
# embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1) | |
# embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations) | |
# embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True) | |
# k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm)) | |
# exp_k_theta = torch.exp(k_theta) | |
# | |
# # S_theta | |
# masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye | |
# s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True) | |
# | |
# # loss | |
# loss = -torch.mean(torch.mul(s_f, torch.log(s_theta))) | |
# | |
# return loss | |
class CrossPixelSimilarityLoss(): | |
''' | |
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py | |
''' | |
def __init__(self, sigma=0.01, sampling_size=512): | |
self.sigma = sigma | |
self.sampling_size = sampling_size | |
self.epsilon = 1.0e-15 | |
self.embed_norm = True # loss does not decrease no matter it is true or false. | |
def __call__(self, embeddings, flows): | |
''' | |
embedding: Variable Nx256xHxW (not hyper-column) | |
flows: Variable Nx2xHxW | |
''' | |
assert flows.size(1) == 2 | |
# flow normalization | |
positive_mask = (flows > 0) | |
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.) | |
flows[positive_mask] = -flows[positive_mask] | |
# embedding normalization | |
if self.embed_norm: | |
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True) | |
# Spatially random sampling (512 samples) | |
flows_flatten = flows.view(flows.shape[0], 2, -1) | |
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda()) | |
flows_sample = torch.index_select(flows_flatten, 2, random_locations) | |
# K_f | |
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) - | |
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3, | |
keepdim=False) ** 2 | |
exp_k_f = torch.exp(-k_f / 2. / self.sigma) | |
# mask | |
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda()) | |
mask = torch.ones_like(exp_k_f) - eye | |
# S_f | |
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye | |
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True) | |
# K_theta | |
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1) | |
embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations) | |
embeddings_sample_norm = torch.norm(embeddings_sample, p=2, dim=1, keepdim=True) | |
k_theta = 0.25 * (torch.matmul(embeddings_sample.permute(0, 2, 1), embeddings_sample)) / (self.epsilon + torch.matmul(embeddings_sample_norm.permute(0, 2, 1), embeddings_sample_norm)) | |
exp_k_theta = torch.exp(k_theta) | |
# S_theta | |
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye | |
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True) | |
# loss | |
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta))) | |
return loss | |
class CrossPixelSimilarityFullLoss(): | |
''' | |
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py | |
''' | |
def __init__(self, sigma=0.01): | |
self.sigma = sigma | |
self.epsilon = 1.0e-15 | |
self.embed_norm = True # loss does not decrease no matter it is true or false. | |
def __call__(self, embeddings, flows): | |
''' | |
embedding: Variable Nx256xHxW (not hyper-column) | |
flows: Variable Nx2xHxW | |
''' | |
assert flows.size(1) == 2 | |
# downsample flow | |
factor = flows.shape[2] // embeddings.shape[2] | |
flows = nn.functional.avg_pool2d(flows, factor, factor) | |
assert flows.shape[2] == embeddings.shape[2] | |
# flow normalization | |
positive_mask = (flows > 0) | |
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.) | |
flows[positive_mask] = -flows[positive_mask] | |
# embedding normalization | |
if self.embed_norm: | |
embeddings /= torch.norm(embeddings, p=2, dim=1, keepdim=True) | |
# Spatially random sampling (512 samples) | |
flows_flatten = flows.view(flows.shape[0], 2, -1) | |
#random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda()) | |
#flows_sample = torch.index_select(flows_flatten, 2, random_locations) | |
# K_f | |
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_flatten, dim=-1).permute(0, 3, 2, 1) - | |
torch.unsqueeze(flows_flatten, dim=-1).permute(0, 2, 3, 1), p=2, dim=3, | |
keepdim=False) ** 2 | |
exp_k_f = torch.exp(-k_f / 2. / self.sigma) | |
# mask | |
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda()) | |
mask = torch.ones_like(exp_k_f) - eye | |
# S_f | |
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye | |
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True) | |
# K_theta | |
embeddings_flatten = embeddings.view(embeddings.shape[0], embeddings.shape[1], -1) | |
#embeddings_sample = torch.index_select(embeddings_flatten, 2, random_locations) | |
embeddings_flatten_norm = torch.norm(embeddings_flatten, p=2, dim=1, keepdim=True) | |
k_theta = 0.25 * (torch.matmul(embeddings_flatten.permute(0, 2, 1), embeddings_flatten)) / (self.epsilon + torch.matmul(embeddings_flatten_norm.permute(0, 2, 1), embeddings_flatten_norm)) | |
exp_k_theta = torch.exp(k_theta) | |
# S_theta | |
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + eye | |
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True) | |
# loss | |
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta))) | |
return loss | |
def get_column(embeddings, index, full_size): | |
col = [] | |
for embd in embeddings: | |
ind = (index.float() / full_size * embd.size(2)).long() | |
col.append(torch.index_select(embd.view(embd.shape[0], embd.shape[1], -1), 2, ind)) | |
return torch.cat(col, dim=1) # N x coldim x sparsenum | |
class CrossPixelSimilarityColumnLoss(nn.Module): | |
''' | |
Modified from: https://github.com/lppllppl920/Challenge2018/blob/master/loss.py | |
''' | |
def __init__(self, sigma=0.0036, sampling_size=512): | |
super(CrossPixelSimilarityColumnLoss, self).__init__() | |
self.sigma = sigma | |
self.sampling_size = sampling_size | |
self.epsilon = 1.0e-15 | |
self.embed_norm = True # loss does not decrease no matter it is true or false. | |
self.mlp = nn.Sequential( | |
nn.Linear(96 + 96 + 384 + 256 + 4096, 256), | |
nn.ReLU(inplace=True), | |
nn.Linear(256, 16)) | |
def forward(self, feats, flows): | |
''' | |
embedding: Variable Nx256xHxW (not hyper-column) | |
flows: Variable Nx2xHxW | |
''' | |
assert flows.size(1) == 2 | |
# flow normalization | |
positive_mask = (flows > 0) | |
flows = -torch.clamp(torch.log(torch.abs(flows) + 1) / math.log(50. + 1), max=1.) | |
flows[positive_mask] = -flows[positive_mask] | |
# Spatially random sampling (512 samples) | |
flows_flatten = flows.view(flows.shape[0], 2, -1) | |
random_locations = Variable(torch.from_numpy(np.array(random.sample(range(flows_flatten.shape[2]), self.sampling_size))).long().cuda()) | |
flows_sample = torch.index_select(flows_flatten, 2, random_locations) | |
# K_f | |
k_f = self.epsilon + torch.norm(torch.unsqueeze(flows_sample, dim=-1).permute(0, 3, 2, 1) - | |
torch.unsqueeze(flows_sample, dim=-1).permute(0, 2, 3, 1), p=2, dim=3, | |
keepdim=False) ** 2 | |
exp_k_f = torch.exp(-k_f / 2. / self.sigma) | |
# mask | |
eye = Variable(torch.unsqueeze(torch.eye(k_f.shape[1]), dim=0).cuda()) | |
mask = torch.ones_like(exp_k_f) - eye | |
# S_f | |
masked_exp_k_f = torch.mul(mask, exp_k_f) + eye | |
s_f = masked_exp_k_f / torch.sum(masked_exp_k_f, dim=1, keepdim=True) | |
# column | |
column = get_column(feats, random_locations, flows.shape[2]) | |
embedding = self.mlp(column) | |
# K_theta | |
embedding_norm = torch.norm(embedding, p=2, dim=1, keepdim=True) | |
k_theta = 0.25 * (torch.matmul(embedding.permute(0, 2, 1), embedding)) / (self.epsilon + torch.matmul(embedding_norm.permute(0, 2, 1), embedding_norm)) | |
exp_k_theta = torch.exp(k_theta) | |
# S_theta | |
masked_exp_k_theta = torch.mul(mask, exp_k_theta) + math.exp(-0.75) * eye | |
s_theta = masked_exp_k_theta / torch.sum(masked_exp_k_theta, dim=1, keepdim=True) | |
# loss | |
loss = -torch.mean(torch.mul(s_f, torch.log(s_theta))) | |
return loss | |
def print_info(name, var): | |
print(name, var.size(), torch.max(var).data.cpu()[0], torch.min(var).data.cpu()[0], torch.mean(var).data.cpu()[0]) | |
def MaskL1Loss(input, target, mask): | |
input_size = input.size() | |
res = torch.sum(torch.abs(input * mask - target * mask)) | |
total = torch.sum(mask).item() | |
if total > 0: | |
res = res / (total * input_size[1]) | |
return res | |