Spaces:
Sleeping
Sleeping
import numpy as np | |
import torch | |
from . import flowlib | |
class Fuser(object): | |
def __init__(self, nbins, fmax): | |
self.nbins = nbins | |
self.fmax = fmax | |
self.step = 2 * fmax / float(nbins) | |
self.mesh = torch.arange(nbins).view(1,-1,1,1).float().cuda() * self.step - fmax + self.step / 2 | |
def convert_flow(self, flow_prob): | |
flow_probx = torch.nn.functional.softmax(flow_prob[:, :self.nbins, :, :], dim=1) | |
flow_proby = torch.nn.functional.softmax(flow_prob[:, self.nbins:, :, :], dim=1) | |
flow_probx = flow_probx * self.mesh | |
flow_proby = flow_proby * self.mesh | |
flow = torch.cat([flow_probx.sum(dim=1, keepdim=True), flow_proby.sum(dim=1, keepdim=True)], dim=1) | |
return flow | |
def visualize_tensor_old(image, mask, flow_pred, flow_target, warped, rgb_gen, image_target, image_mean, image_div): | |
together = [ | |
draw_cross(unormalize(image.cpu(), mean=image_mean, div=image_div), mask.cpu(), radius=int(image.size(3) / 50.)), | |
flow_to_image(flow_pred.detach().cpu()), | |
flow_to_image(flow_target.detach().cpu())] | |
if warped is not None: | |
together.append(torch.clamp(unormalize(warped.detach().cpu(), mean=image_mean, div=image_div), 0, 255)) | |
if rgb_gen is not None: | |
together.append(torch.clamp(unormalize(rgb_gen.detach().cpu(), mean=image_mean, div=image_div), 0, 255)) | |
if image_target is not None: | |
together.append(torch.clamp(unormalize(image_target.cpu(), mean=image_mean, div=image_div), 0, 255)) | |
together = torch.cat(together, dim=3) | |
return together | |
def visualize_tensor(image, mask, flow_tensors, common_tensors, rgb_tensors, image_mean, image_div): | |
together = [ | |
draw_cross(unormalize(image.cpu(), mean=image_mean, div=image_div), mask.cpu(), radius=int(image.size(3) / 50.))] | |
for ft in flow_tensors: | |
together.append(flow_to_image(ft.cpu())) | |
for ct in common_tensors: | |
together.append(torch.clamp(ct.cpu(), 0, 255)) | |
for rt in rgb_tensors: | |
together.append(torch.clamp(unormalize(rt.cpu(), mean=image_mean, div=image_div), 0, 255)) | |
together = torch.cat(together, dim=3) | |
return together | |
def unormalize(tensor, mean, div): | |
for c, (m, d) in enumerate(zip(mean, div)): | |
tensor[:,c,:,:].mul_(d).add_(m) | |
return tensor | |
def flow_to_image(flow): | |
flow = flow.numpy() | |
flow_img = np.array([flowlib.flow_to_image(fl.transpose((1,2,0))).transpose((2,0,1)) for fl in flow]).astype(np.float32) | |
return torch.from_numpy(flow_img) | |
def shift_tensor(input, offh, offw): | |
new = torch.zeros(input.size()) | |
h = input.size(2) | |
w = input.size(3) | |
new[:,:,max(0,offh):min(h,h+offh),max(0,offw):min(w,w+offw)] = input[:,:,max(0,-offh):min(h,h-offh),max(0,-offw):min(w,w-offw)] | |
return new | |
def draw_block(mask, radius=5): | |
''' | |
input: tensor (NxCxHxW) | |
output: block_mask (Nx1xHxW) | |
''' | |
all_mask = [] | |
mask = mask[:,0:1,:,:] | |
for offh in range(-radius, radius+1): | |
for offw in range(-radius, radius+1): | |
all_mask.append(shift_tensor(mask, offh, offw)) | |
block_mask = sum(all_mask) | |
block_mask[block_mask > 0] = 1 | |
return block_mask | |
def expand_block(sparse, radius=5): | |
''' | |
input: sparse (NxCxHxW) | |
output: block_sparse (NxCxHxW) | |
''' | |
all_sparse = [] | |
for offh in range(-radius, radius+1): | |
for offw in range(-radius, radius+1): | |
all_sparse.append(shift_tensor(sparse, offh, offw)) | |
block_sparse = sum(all_sparse) | |
return block_sparse | |
def draw_cross(tensor, mask, radius=5, thickness=2): | |
''' | |
input: tensor (NxCxHxW) | |
mask (NxXxHxW) | |
output: new_tensor (NxCxHxW) | |
''' | |
all_mask = [] | |
mask = mask[:,0:1,:,:] | |
for off in range(-radius, radius+1): | |
for t in range(-thickness, thickness+1): | |
all_mask.append(shift_tensor(mask, off, t)) | |
all_mask.append(shift_tensor(mask, t, off)) | |
cross_mask = sum(all_mask) | |
new_tensor = tensor.clone() | |
new_tensor[:,0:1,:,:][cross_mask > 0] = 255.0 | |
new_tensor[:,1:2,:,:][cross_mask > 0] = 0.0 | |
new_tensor[:,2:3,:,:][cross_mask > 0] = 0.0 | |
return new_tensor | |