Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
import collections | |
import cupy | |
import os | |
import re | |
import torch | |
import typing | |
########################################################## | |
objCudacache = {} | |
def cuda_int32(intIn:int): | |
return cupy.int32(intIn) | |
# end | |
def cuda_float32(fltIn:float): | |
return cupy.float32(fltIn) | |
# end | |
def cuda_kernel(strFunction:str, strKernel:str, objVariables:typing.Dict): | |
if 'device' not in objCudacache: | |
objCudacache['device'] = torch.cuda.get_device_name() | |
# end | |
strKey = strFunction | |
for strVariable in objVariables: | |
objValue = objVariables[strVariable] | |
strKey += strVariable | |
if objValue is None: | |
continue | |
elif type(objValue) == int: | |
strKey += str(objValue) | |
elif type(objValue) == float: | |
strKey += str(objValue) | |
elif type(objValue) == bool: | |
strKey += str(objValue) | |
elif type(objValue) == str: | |
strKey += objValue | |
elif type(objValue) == torch.Tensor: | |
strKey += str(objValue.dtype) | |
strKey += str(objValue.shape) | |
strKey += str(objValue.stride()) | |
elif True: | |
print(strVariable, type(objValue)) | |
assert(False) | |
# end | |
# end | |
strKey += objCudacache['device'] | |
if strKey not in objCudacache: | |
for strVariable in objVariables: | |
objValue = objVariables[strVariable] | |
if objValue is None: | |
continue | |
elif type(objValue) == int: | |
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) | |
elif type(objValue) == float: | |
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) | |
elif type(objValue) == bool: | |
strKernel = strKernel.replace('{{' + strVariable + '}}', str(objValue)) | |
elif type(objValue) == str: | |
strKernel = strKernel.replace('{{' + strVariable + '}}', objValue) | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.uint8: | |
strKernel = strKernel.replace('{{type}}', 'unsigned char') | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float16: | |
strKernel = strKernel.replace('{{type}}', 'half') | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float32: | |
strKernel = strKernel.replace('{{type}}', 'float') | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.float64: | |
strKernel = strKernel.replace('{{type}}', 'double') | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int32: | |
strKernel = strKernel.replace('{{type}}', 'int') | |
elif type(objValue) == torch.Tensor and objValue.dtype == torch.int64: | |
strKernel = strKernel.replace('{{type}}', 'long') | |
elif type(objValue) == torch.Tensor: | |
print(strVariable, objValue.dtype) | |
assert(False) | |
elif True: | |
print(strVariable, type(objValue)) | |
assert(False) | |
# end | |
# end | |
while True: | |
objMatch = re.search('(SIZE_)([0-4])(\()([^\)]*)(\))', strKernel) | |
if objMatch is None: | |
break | |
# end | |
intArg = int(objMatch.group(2)) | |
strTensor = objMatch.group(4) | |
intSizes = objVariables[strTensor].size() | |
strKernel = strKernel.replace(objMatch.group(), str(intSizes[intArg] if torch.is_tensor(intSizes[intArg]) == False else intSizes[intArg].item())) | |
# end | |
while True: | |
objMatch = re.search('(OFFSET_)([0-4])(\()', strKernel) | |
if objMatch is None: | |
break | |
# end | |
intStart = objMatch.span()[1] | |
intStop = objMatch.span()[1] | |
intParentheses = 1 | |
while True: | |
intParentheses += 1 if strKernel[intStop] == '(' else 0 | |
intParentheses -= 1 if strKernel[intStop] == ')' else 0 | |
if intParentheses == 0: | |
break | |
# end | |
intStop += 1 | |
# end | |
intArgs = int(objMatch.group(2)) | |
strArgs = strKernel[intStart:intStop].split(',') | |
assert(intArgs == len(strArgs) - 1) | |
strTensor = strArgs[0] | |
intStrides = objVariables[strTensor].stride() | |
strIndex = [] | |
for intArg in range(intArgs): | |
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') | |
# end | |
strKernel = strKernel.replace('OFFSET_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', '(' + str.join('+', strIndex) + ')') | |
# end | |
while True: | |
objMatch = re.search('(VALUE_)([0-4])(\()', strKernel) | |
if objMatch is None: | |
break | |
# end | |
intStart = objMatch.span()[1] | |
intStop = objMatch.span()[1] | |
intParentheses = 1 | |
while True: | |
intParentheses += 1 if strKernel[intStop] == '(' else 0 | |
intParentheses -= 1 if strKernel[intStop] == ')' else 0 | |
if intParentheses == 0: | |
break | |
# end | |
intStop += 1 | |
# end | |
intArgs = int(objMatch.group(2)) | |
strArgs = strKernel[intStart:intStop].split(',') | |
assert(intArgs == len(strArgs) - 1) | |
strTensor = strArgs[0] | |
intStrides = objVariables[strTensor].stride() | |
strIndex = [] | |
for intArg in range(intArgs): | |
strIndex.append('((' + strArgs[intArg + 1].replace('{', '(').replace('}', ')').strip() + ')*' + str(intStrides[intArg] if torch.is_tensor(intStrides[intArg]) == False else intStrides[intArg].item()) + ')') | |
# end | |
strKernel = strKernel.replace('VALUE_' + str(intArgs) + '(' + strKernel[intStart:intStop] + ')', strTensor + '[' + str.join('+', strIndex) + ']') | |
# end | |
objCudacache[strKey] = { | |
'strFunction': strFunction, | |
'strKernel': strKernel | |
} | |
# end | |
return strKey | |
# end | |
def cuda_launch(strKey:str): | |
if 'CUDA_HOME' not in os.environ: | |
os.environ['CUDA_HOME'] = cupy.cuda.get_cuda_path() | |
# end | |
return cupy.cuda.compile_with_cache(objCudacache[strKey]['strKernel'], tuple(['-I ' + os.environ['CUDA_HOME'], '-I ' + os.environ['CUDA_HOME'] + '/include'])).get_function(objCudacache[strKey]['strFunction']) | |
# end | |
########################################################## | |
def softsplat(tenIn:torch.Tensor, tenFlow:torch.Tensor, tenMetric:torch.Tensor, strMode:str): | |
assert(strMode.split('-')[0] in ['sum', 'avg', 'linear', 'soft']) | |
if strMode == 'sum': assert(tenMetric is None) | |
if strMode == 'avg': assert(tenMetric is None) | |
if strMode.split('-')[0] == 'linear': assert(tenMetric is not None) | |
if strMode.split('-')[0] == 'soft': assert(tenMetric is not None) | |
if strMode == 'avg': | |
tenIn = torch.cat([tenIn, tenIn.new_ones([tenIn.shape[0], 1, tenIn.shape[2], tenIn.shape[3]])], 1) | |
elif strMode.split('-')[0] == 'linear': | |
tenIn = torch.cat([tenIn * tenMetric, tenMetric], 1) | |
elif strMode.split('-')[0] == 'soft': | |
tenIn = torch.cat([tenIn * tenMetric.exp(), tenMetric.exp()], 1) | |
# end | |
tenOut = softsplat_func.apply(tenIn, tenFlow) | |
if strMode.split('-')[0] in ['avg', 'linear', 'soft']: | |
tenNormalize = tenOut[:, -1:, :, :] | |
if len(strMode.split('-')) == 1: | |
tenNormalize = tenNormalize + 0.0000001 | |
elif strMode.split('-')[1] == 'addeps': | |
tenNormalize = tenNormalize + 0.0000001 | |
elif strMode.split('-')[1] == 'zeroeps': | |
tenNormalize[tenNormalize == 0.0] = 1.0 | |
elif strMode.split('-')[1] == 'clipeps': | |
tenNormalize = tenNormalize.clip(0.0000001, None) | |
# end | |
tenOut = tenOut[:, :-1, :, :] / tenNormalize | |
# end | |
return tenOut | |
# end | |
class softsplat_func(torch.autograd.Function): | |
def forward(self, tenIn, tenFlow): | |
tenOut = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) | |
if tenIn.is_cuda == True: | |
cuda_launch(cuda_kernel('softsplat_out', ''' | |
extern "C" __global__ void __launch_bounds__(512) softsplat_out( | |
const int n, | |
const {{type}}* __restrict__ tenIn, | |
const {{type}}* __restrict__ tenFlow, | |
{{type}}* __restrict__ tenOut | |
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { | |
const int intN = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) / SIZE_1(tenOut) ) % SIZE_0(tenOut); | |
const int intC = ( intIndex / SIZE_3(tenOut) / SIZE_2(tenOut) ) % SIZE_1(tenOut); | |
const int intY = ( intIndex / SIZE_3(tenOut) ) % SIZE_2(tenOut); | |
const int intX = ( intIndex ) % SIZE_3(tenOut); | |
assert(SIZE_1(tenFlow) == 2); | |
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); | |
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); | |
if (isfinite(fltX) == false) { return; } | |
if (isfinite(fltY) == false) { return; } | |
{{type}} fltIn = VALUE_4(tenIn, intN, intC, intY, intX); | |
int intNorthwestX = (int) (floor(fltX)); | |
int intNorthwestY = (int) (floor(fltY)); | |
int intNortheastX = intNorthwestX + 1; | |
int intNortheastY = intNorthwestY; | |
int intSouthwestX = intNorthwestX; | |
int intSouthwestY = intNorthwestY + 1; | |
int intSoutheastX = intNorthwestX + 1; | |
int intSoutheastY = intNorthwestY + 1; | |
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); | |
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); | |
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); | |
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); | |
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOut)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOut))) { | |
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNorthwestY, intNorthwestX)], fltIn * fltNorthwest); | |
} | |
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOut)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOut))) { | |
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intNortheastY, intNortheastX)], fltIn * fltNortheast); | |
} | |
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOut)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOut))) { | |
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSouthwestY, intSouthwestX)], fltIn * fltSouthwest); | |
} | |
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOut)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOut))) { | |
atomicAdd(&tenOut[OFFSET_4(tenOut, intN, intC, intSoutheastY, intSoutheastX)], fltIn * fltSoutheast); | |
} | |
} } | |
''', { | |
'tenIn': tenIn, | |
'tenFlow': tenFlow, | |
'tenOut': tenOut | |
}))( | |
grid=tuple([int((tenOut.nelement() + 512 - 1) / 512), 1, 1]), | |
block=tuple([512, 1, 1]), | |
args=[cuda_int32(tenOut.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOut.data_ptr()], | |
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) | |
) | |
elif tenIn.is_cuda != True: | |
assert(False) | |
# end | |
self.save_for_backward(tenIn, tenFlow) | |
return tenOut | |
# end | |
def backward(self, tenOutgrad): | |
tenIn, tenFlow = self.saved_tensors | |
tenOutgrad = tenOutgrad.contiguous(); assert(tenOutgrad.is_cuda == True) | |
tenIngrad = tenIn.new_zeros([tenIn.shape[0], tenIn.shape[1], tenIn.shape[2], tenIn.shape[3]]) if self.needs_input_grad[0] == True else None | |
tenFlowgrad = tenFlow.new_zeros([tenFlow.shape[0], tenFlow.shape[1], tenFlow.shape[2], tenFlow.shape[3]]) if self.needs_input_grad[1] == True else None | |
if tenIngrad is not None: | |
cuda_launch(cuda_kernel('softsplat_ingrad', ''' | |
extern "C" __global__ void __launch_bounds__(512) softsplat_ingrad( | |
const int n, | |
const {{type}}* __restrict__ tenIn, | |
const {{type}}* __restrict__ tenFlow, | |
const {{type}}* __restrict__ tenOutgrad, | |
{{type}}* __restrict__ tenIngrad, | |
{{type}}* __restrict__ tenFlowgrad | |
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { | |
const int intN = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) / SIZE_1(tenIngrad) ) % SIZE_0(tenIngrad); | |
const int intC = ( intIndex / SIZE_3(tenIngrad) / SIZE_2(tenIngrad) ) % SIZE_1(tenIngrad); | |
const int intY = ( intIndex / SIZE_3(tenIngrad) ) % SIZE_2(tenIngrad); | |
const int intX = ( intIndex ) % SIZE_3(tenIngrad); | |
assert(SIZE_1(tenFlow) == 2); | |
{{type}} fltIngrad = 0.0f; | |
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); | |
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); | |
if (isfinite(fltX) == false) { return; } | |
if (isfinite(fltY) == false) { return; } | |
int intNorthwestX = (int) (floor(fltX)); | |
int intNorthwestY = (int) (floor(fltY)); | |
int intNortheastX = intNorthwestX + 1; | |
int intNortheastY = intNorthwestY; | |
int intSouthwestX = intNorthwestX; | |
int intSouthwestY = intNorthwestY + 1; | |
int intSoutheastX = intNorthwestX + 1; | |
int intSoutheastY = intNorthwestY + 1; | |
{{type}} fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (intSoutheastY) - fltY); | |
{{type}} fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (intSouthwestY) - fltY); | |
{{type}} fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (fltY - ({{type}}) (intNortheastY)); | |
{{type}} fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (fltY - ({{type}}) (intNorthwestY)); | |
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { | |
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNorthwestY, intNorthwestX) * fltNorthwest; | |
} | |
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { | |
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intNortheastY, intNortheastX) * fltNortheast; | |
} | |
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { | |
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSouthwestY, intSouthwestX) * fltSouthwest; | |
} | |
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { | |
fltIngrad += VALUE_4(tenOutgrad, intN, intC, intSoutheastY, intSoutheastX) * fltSoutheast; | |
} | |
tenIngrad[intIndex] = fltIngrad; | |
} } | |
''', { | |
'tenIn': tenIn, | |
'tenFlow': tenFlow, | |
'tenOutgrad': tenOutgrad, | |
'tenIngrad': tenIngrad, | |
'tenFlowgrad': tenFlowgrad | |
}))( | |
grid=tuple([int((tenIngrad.nelement() + 512 - 1) / 512), 1, 1]), | |
block=tuple([512, 1, 1]), | |
args=[cuda_int32(tenIngrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), tenIngrad.data_ptr(), None], | |
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) | |
) | |
# end | |
if tenFlowgrad is not None: | |
cuda_launch(cuda_kernel('softsplat_flowgrad', ''' | |
extern "C" __global__ void __launch_bounds__(512) softsplat_flowgrad( | |
const int n, | |
const {{type}}* __restrict__ tenIn, | |
const {{type}}* __restrict__ tenFlow, | |
const {{type}}* __restrict__ tenOutgrad, | |
{{type}}* __restrict__ tenIngrad, | |
{{type}}* __restrict__ tenFlowgrad | |
) { for (int intIndex = (blockIdx.x * blockDim.x) + threadIdx.x; intIndex < n; intIndex += blockDim.x * gridDim.x) { | |
const int intN = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) / SIZE_1(tenFlowgrad) ) % SIZE_0(tenFlowgrad); | |
const int intC = ( intIndex / SIZE_3(tenFlowgrad) / SIZE_2(tenFlowgrad) ) % SIZE_1(tenFlowgrad); | |
const int intY = ( intIndex / SIZE_3(tenFlowgrad) ) % SIZE_2(tenFlowgrad); | |
const int intX = ( intIndex ) % SIZE_3(tenFlowgrad); | |
assert(SIZE_1(tenFlow) == 2); | |
{{type}} fltFlowgrad = 0.0f; | |
{{type}} fltX = ({{type}}) (intX) + VALUE_4(tenFlow, intN, 0, intY, intX); | |
{{type}} fltY = ({{type}}) (intY) + VALUE_4(tenFlow, intN, 1, intY, intX); | |
if (isfinite(fltX) == false) { return; } | |
if (isfinite(fltY) == false) { return; } | |
int intNorthwestX = (int) (floor(fltX)); | |
int intNorthwestY = (int) (floor(fltY)); | |
int intNortheastX = intNorthwestX + 1; | |
int intNortheastY = intNorthwestY; | |
int intSouthwestX = intNorthwestX; | |
int intSouthwestY = intNorthwestY + 1; | |
int intSoutheastX = intNorthwestX + 1; | |
int intSoutheastY = intNorthwestY + 1; | |
{{type}} fltNorthwest = 0.0f; | |
{{type}} fltNortheast = 0.0f; | |
{{type}} fltSouthwest = 0.0f; | |
{{type}} fltSoutheast = 0.0f; | |
if (intC == 0) { | |
fltNorthwest = (({{type}}) (-1.0f)) * (({{type}}) (intSoutheastY) - fltY); | |
fltNortheast = (({{type}}) (+1.0f)) * (({{type}}) (intSouthwestY) - fltY); | |
fltSouthwest = (({{type}}) (-1.0f)) * (fltY - ({{type}}) (intNortheastY)); | |
fltSoutheast = (({{type}}) (+1.0f)) * (fltY - ({{type}}) (intNorthwestY)); | |
} else if (intC == 1) { | |
fltNorthwest = (({{type}}) (intSoutheastX) - fltX) * (({{type}}) (-1.0f)); | |
fltNortheast = (fltX - ({{type}}) (intSouthwestX)) * (({{type}}) (-1.0f)); | |
fltSouthwest = (({{type}}) (intNortheastX) - fltX) * (({{type}}) (+1.0f)); | |
fltSoutheast = (fltX - ({{type}}) (intNorthwestX)) * (({{type}}) (+1.0f)); | |
} | |
for (int intChannel = 0; intChannel < SIZE_1(tenOutgrad); intChannel += 1) { | |
{{type}} fltIn = VALUE_4(tenIn, intN, intChannel, intY, intX); | |
if ((intNorthwestX >= 0) && (intNorthwestX < SIZE_3(tenOutgrad)) && (intNorthwestY >= 0) && (intNorthwestY < SIZE_2(tenOutgrad))) { | |
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNorthwestY, intNorthwestX) * fltIn * fltNorthwest; | |
} | |
if ((intNortheastX >= 0) && (intNortheastX < SIZE_3(tenOutgrad)) && (intNortheastY >= 0) && (intNortheastY < SIZE_2(tenOutgrad))) { | |
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intNortheastY, intNortheastX) * fltIn * fltNortheast; | |
} | |
if ((intSouthwestX >= 0) && (intSouthwestX < SIZE_3(tenOutgrad)) && (intSouthwestY >= 0) && (intSouthwestY < SIZE_2(tenOutgrad))) { | |
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSouthwestY, intSouthwestX) * fltIn * fltSouthwest; | |
} | |
if ((intSoutheastX >= 0) && (intSoutheastX < SIZE_3(tenOutgrad)) && (intSoutheastY >= 0) && (intSoutheastY < SIZE_2(tenOutgrad))) { | |
fltFlowgrad += VALUE_4(tenOutgrad, intN, intChannel, intSoutheastY, intSoutheastX) * fltIn * fltSoutheast; | |
} | |
} | |
tenFlowgrad[intIndex] = fltFlowgrad; | |
} } | |
''', { | |
'tenIn': tenIn, | |
'tenFlow': tenFlow, | |
'tenOutgrad': tenOutgrad, | |
'tenIngrad': tenIngrad, | |
'tenFlowgrad': tenFlowgrad | |
}))( | |
grid=tuple([int((tenFlowgrad.nelement() + 512 - 1) / 512), 1, 1]), | |
block=tuple([512, 1, 1]), | |
args=[cuda_int32(tenFlowgrad.nelement()), tenIn.data_ptr(), tenFlow.data_ptr(), tenOutgrad.data_ptr(), None, tenFlowgrad.data_ptr()], | |
stream=collections.namedtuple('Stream', 'ptr')(torch.cuda.current_stream().cuda_stream) | |
) | |
# end | |
return tenIngrad, tenFlowgrad | |
# end | |
# end | |