Spaces:
Runtime error
Runtime error
TranGiaBao
commited on
Commit
•
77852b1
0
Parent(s):
Duplicate from trangiabao17032000/final_tts
Browse files- .gitattributes +35 -0
- README.md +13 -0
- app.py +148 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Final Tts
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.40.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: trangiabao17032000/final_tts
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import soundfile as sf
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
5 |
+
from transformers import SpeechT5HifiGan
|
6 |
+
from datasets import load_dataset
|
7 |
+
from IPython.display import Audio
|
8 |
+
import numpy as np
|
9 |
+
model_name = "trangiabao17032000/final_tts"
|
10 |
+
|
11 |
+
#processor
|
12 |
+
processor = SpeechT5Processor.from_pretrained(model_name)
|
13 |
+
tokenizer = processor.tokenizer
|
14 |
+
|
15 |
+
#model
|
16 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
|
17 |
+
model.resize_token_embeddings(len(tokenizer))
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
#vocoder
|
21 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
22 |
+
vocoder.eval()
|
23 |
+
|
24 |
+
#speaker embedding
|
25 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
+
|
28 |
+
#cleaner text
|
29 |
+
def convert_string_to_numbers(input_str):
|
30 |
+
try:
|
31 |
+
# Replace comma with period and attempt to convert the string to a float
|
32 |
+
num = float(input_str.replace(',', '.'))
|
33 |
+
if num.is_integer():
|
34 |
+
return int(num)
|
35 |
+
return num
|
36 |
+
except ValueError:
|
37 |
+
# If it's not a valid float, check if it's an integer or a negative integer
|
38 |
+
if input_str.replace('.', '', 1).isdigit(): # Remove one dot for checking integers
|
39 |
+
return int(input_str.replace(',', ''))
|
40 |
+
elif input_str[0] == '-' and input_str[1:].replace('.', '', 1).isdigit():
|
41 |
+
return int(input_str.replace(',', ''))
|
42 |
+
else:
|
43 |
+
raise ValueError("Invalid input: couldn't convert to a number")
|
44 |
+
|
45 |
+
def number_to_vietnamese_words(number):
|
46 |
+
ones = ['', 'một', 'hai', 'ba', 'bốn', 'năm', 'sáu', 'bảy', 'tám', 'chín']
|
47 |
+
tens = ['', 'mười', 'hai mươi', 'ba mươi', 'bốn mươi', 'năm mươi', 'sáu mươi', 'bảy mươi', 'tám mươi', 'chín mươi']
|
48 |
+
hundreds = ['', 'một trăm', 'Hai trăm', 'ba trăm', 'bốn trăm', 'năm trăm', 'sáu trăm', 'bảy trăm', 'tám trăm', 'chín trăm']
|
49 |
+
thousands = [''] + ['nghìn', 'triệu', 'tỷ']
|
50 |
+
|
51 |
+
def words(n):
|
52 |
+
|
53 |
+
if n < 10:
|
54 |
+
return ones[n]
|
55 |
+
elif n < 20:
|
56 |
+
return tens[n//10] + " " + words(n % 10)
|
57 |
+
elif n < 100:
|
58 |
+
return tens[n // 10] + ('' if n % 10 == 0 else ' ' + ones[n % 10])
|
59 |
+
else:
|
60 |
+
return hundreds[n // 100] + ('' if n % 100 == 0 else (' lẻ ' if n % 100 < 10 else ' ') + words(n % 100))
|
61 |
+
|
62 |
+
if number == 0:
|
63 |
+
return 'không'
|
64 |
+
|
65 |
+
integer_part = int(number)
|
66 |
+
decimal_part = round((number - integer_part) * 100) # Round the decimal part to 2 decimal places
|
67 |
+
|
68 |
+
result = []
|
69 |
+
i = 0
|
70 |
+
while integer_part > 0:
|
71 |
+
if integer_part % 1000 != 0:
|
72 |
+
result.append(words(integer_part % 1000) + (' ' + thousands[i] if i > 0 else ''))
|
73 |
+
integer_part //= 1000
|
74 |
+
i += 1
|
75 |
+
|
76 |
+
result_integer = ' '.join(result[::-1])
|
77 |
+
|
78 |
+
result_decimal = ''
|
79 |
+
if decimal_part > 0:
|
80 |
+
result_decimal = ' phẩy'
|
81 |
+
for digit in str(decimal_part):
|
82 |
+
result_decimal += ' ' + ones[int(digit)]
|
83 |
+
|
84 |
+
return result_integer + result_decimal
|
85 |
+
|
86 |
+
def is_num(string):
|
87 |
+
try:
|
88 |
+
float(string)
|
89 |
+
except ValueError:
|
90 |
+
return False
|
91 |
+
return True
|
92 |
+
|
93 |
+
def normalize(input):
|
94 |
+
input = input.lower()
|
95 |
+
newstr = map(lambda x: number_to_vietnamese_words(convert_string_to_numbers(x)) if is_num(x) else x, input.split(" "))
|
96 |
+
return ' '.join(newstr)
|
97 |
+
|
98 |
+
def split_paragraph_into_sentences(paragraph, max_chars = 300):
|
99 |
+
sentences = []
|
100 |
+
words = paragraph.split()
|
101 |
+
current_sentence = words[0]
|
102 |
+
|
103 |
+
for word in words[1:]:
|
104 |
+
if len(current_sentence) + len(word) + 1 <= max_chars:
|
105 |
+
current_sentence += ' ' + word
|
106 |
+
else:
|
107 |
+
sentences.append(current_sentence)
|
108 |
+
current_sentence = word
|
109 |
+
|
110 |
+
if current_sentence:
|
111 |
+
sentences.append(current_sentence)
|
112 |
+
|
113 |
+
return sentences
|
114 |
+
|
115 |
+
# generator speech
|
116 |
+
def text_to_speech(paragraph):
|
117 |
+
try:
|
118 |
+
paragraph = normalize(paragraph)
|
119 |
+
except:
|
120 |
+
paragraph = paragraph.lower()
|
121 |
+
list_sentence = split_paragraph_into_sentences(paragraph)
|
122 |
+
final_speech = np.array([])
|
123 |
+
|
124 |
+
for sentence in list_sentence:
|
125 |
+
|
126 |
+
inputs = processor(text=sentence, return_tensors="pt")
|
127 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings,vocoder=vocoder)
|
128 |
+
final_speech = np.concatenate((final_speech, speech.numpy()))
|
129 |
+
|
130 |
+
sf.write("tts_example.wav", final_speech, samplerate=16000)
|
131 |
+
return "tts_example.wav"
|
132 |
+
|
133 |
+
tts_examples = [
|
134 |
+
"xin chào mọi người, đây là sản phẩm thử nghiệm cho tiếng việt.",
|
135 |
+
"Mình sẽ tổ chức sinh nhật vào thứ 6 ngày 7 tháng này",
|
136 |
+
]
|
137 |
+
|
138 |
+
#gradio interface
|
139 |
+
iface = gr.Interface(
|
140 |
+
fn=text_to_speech,
|
141 |
+
inputs=gr.Textbox(),
|
142 |
+
outputs=gr.Audio(),
|
143 |
+
title="Text-to-Speech",
|
144 |
+
examples=tts_examples,
|
145 |
+
description="Give me something to say!",
|
146 |
+
)
|
147 |
+
|
148 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
soundfile
|
4 |
+
datasets
|
5 |
+
IPython
|
6 |
+
sentencepiece
|