File size: 15,535 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import time
from collections import OrderedDict
import torch

import sys
try:
    sys.path.append("cider")
    from pyciderevalcap.ciderD.ciderD import CiderD
    from pyciderevalcap.cider.cider import Cider
    sys.path.append("coco-caption")
    from pycocoevalcap.bleu.bleu import Bleu
except:
    print('cider or coco-caption missing')

CiderD_scorer = None
Cider_scorer = None
Bleu_scorer = None
#CiderD_scorer = CiderD(df='corpus')


from .misc import decode_sequence

def init_scorer(cached_tokens):
    global CiderD_scorer
    CiderD_scorer = CiderD_scorer or CiderD(df=cached_tokens)
    global Cider_scorer
    Cider_scorer = Cider_scorer or Cider(df=cached_tokens)
    global Bleu_scorer
    Bleu_scorer = Bleu_scorer or Bleu(4)

def array_to_str(arr):
    out = ''
    for i in range(len(arr)):
        out += str(arr[i]) + ' '
        if arr[i] == 0:
            break
    return out.strip()

def get_self_critical_reward(greedy_res, data_gts, gen_result, opt):
    batch_size = len(data_gts) 
    gen_result_size = gen_result.shape[0]
    seq_per_img = gen_result_size // len(data_gts) # gen_result_size  = batch_size * seq_per_img
    assert greedy_res.shape[0] == batch_size

    res = OrderedDict()
    gen_result = gen_result.data.cpu().numpy()
    greedy_res = greedy_res.data.cpu().numpy()
    for i in range(gen_result_size):
        res[i] = [array_to_str(gen_result[i])]
    for i in range(batch_size):
        res[gen_result_size + i] = [array_to_str(greedy_res[i])]

    gts = OrderedDict()
    for i in range(len(data_gts)):
        gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]

    res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
    res__ = {i: res[i] for i in range(len(res_))}
    gts_ = {i: gts[i // seq_per_img] for i in range(gen_result_size)}
    gts_.update({i+gen_result_size: gts[i] for i in range(batch_size)})
    if opt.cider_reward_weight > 0:
        _, cider_scores = CiderD_scorer.compute_score(gts_, res_)
        if hasattr(opt, 'verbose') and not opt.verbose:
            pass
        else:
            print('Cider scores:', _)
    else:
        cider_scores = 0
    if opt.bleu_reward_weight > 0:
        _, bleu_scores = Bleu_scorer.compute_score(gts_, res__)
        bleu_scores = np.array(bleu_scores[3])
        if hasattr(opt, 'verbose') and not opt.verbose:
            pass
        else:
            print('Bleu scores:', _[3])
    else:
        bleu_scores = 0
    scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores

    unnormalized_reward_mean = scores[:gen_result_size].flatten().mean()

    scores = scores[:gen_result_size].reshape(batch_size, seq_per_img) - scores[-batch_size:][:, np.newaxis]

    scores = scores.reshape(gen_result_size)

    rewards = np.repeat(scores[:, np.newaxis], gen_result.shape[1], 1)

    return rewards, unnormalized_reward_mean


def get_self_critical_clipscore_reward(greedy_res, data_gts, gen_result, opt, clipscore_model, clip_vis_feats, vocab):
    batch_size = len(data_gts) 
    gen_result_size = gen_result.shape[0]
    seq_per_img = gen_result_size // len(data_gts) # gen_result_size  = batch_size * seq_per_img
    assert greedy_res.shape[0] == batch_size

    B = batch_size
    K = seq_per_img
    L = gen_result.shape[1]
    assert gen_result.shape == (B*K , L)

    # res = OrderedDict()
    # gen_result = gen_result.data.cpu().numpy()
    # greedy_res = greedy_res.data.cpu().numpy()
    # for i in range(gen_result_size):
    #     res[i] = [array_to_str(gen_result[i])]
    # for i in range(batch_size):
    #     res[gen_result_size + i] = [array_to_str(greedy_res[i])]

    # gts = OrderedDict()
    # for i in range(len(data_gts)):
    #     gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]

    # res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
    # res__ = {i: res[i] for i in range(len(res_))}
    # gts_ = {i: gts[i // seq_per_img] for i in range(gen_result_size)}
    # gts_.update({i+gen_result_size: gts[i] for i in range(batch_size)})

    # res = []
    # gen_result = gen_result.data.cpu().numpy()
    # greedy_res = greedy_res.data.cpu().numpy()
    # # for i in range(gen_result_size):
    #     # res.append(array_to_str(gen_result[i]))
    # res.extend(decode_sequence(vocab, gen_result))
        
        
    # # for i in range(batch_size):
    # #     res.append(array_to_str(greedy_res[i]))
    # res.extend(decode_sequence(vocab, greedy_res))

    if clipscore_model.mode == 'refclip_s':
        gts = []
        gts_valid_mask = []
        max_n_refs = max([len(_gts) for _gts in data_gts])
        for i in range(len(data_gts)):
            _gts = decode_sequence(vocab, data_gts[i])
            # pad references
            n_ref = len(_gts)
            _gts.extend([''] * (max_n_refs - n_ref))
            gts.extend(_gts)
            gts_valid_mask.extend([1] * n_ref + [0] * (max_n_refs - n_ref))
        assert len(gts) == B * max_n_refs
        assert len(gts_valid_mask) == B * max_n_refs

        # print(gts)
        # print(gts_valid_mask)
        # exit()
        

    # assert len(res) == B * K + B, len(res)

    # print(res)
    # exit()
    
    if opt.clipscore_reward_weight > 0:
        with torch.no_grad():
            clipscore_model.eval()

            # 1) calculate reward
            gen_result = gen_result.data.cpu().numpy()
            res = decode_sequence(vocab, gen_result)
            assert len(res) == B * K, len(res)

            # [B * K, dim)
            if getattr(opt, 'use_grammar', False) and not getattr(opt, 'joint_out', False):
                text_pre_feat = clipscore_model.text_extract(res, proj_norm=False)
                
                grammar_logit = clipscore_model.grammar_score_head(text_pre_feat.view(-1, 512))
                grammar_prob = torch.softmax(grammar_logit, dim=-1)[:, 1]
                grammar_prob = grammar_prob.view(B*K).detach()

                text_feat = clipscore_model.clip_model.text_projection(text_pre_feat)
                text_feat = text_feat / text_feat.norm(dim=-1, keepdim=True)

            else:
                text_feat = clipscore_model.text_extract(res)


            assert text_feat.size() == (B * K, 512), text_feat.size()
            assert clip_vis_feats.size() == (B, 512), clip_vis_feats.size()

            # [B * K, dim]
            vis_feat = clip_vis_feats.view(B, 1, -1).expand(-1, K, -1).contiguous().view(B * K, -1)

            clip_s = clipscore_model(text_feat=text_feat, img_feat=vis_feat, mode='clip_s')
            clip_s = clip_s.view(B * K).detach()

            if clipscore_model.mode == 'refclip_s':
                # [B * n_ref, dim]
                ref_text_feat = clipscore_model.text_extract(gts)
                ref_text_mask = torch.tensor(gts_valid_mask, dtype=ref_text_feat.dtype, device=ref_text_feat.device)

                assert ref_text_feat.size() == (B * max_n_refs, 512), ref_text_feat.size()
                assert ref_text_mask.size() == (B * max_n_refs,), ref_text_mask.size()

                # [B * K]
                refclip_s = clipscore_model.calc_refclip_s(
                    text_feat=text_feat, img_feat=vis_feat,
                    ref_text_feat=ref_text_feat.view(B, 1, max_n_refs, -1).expand(-1, K, -1, -1).contiguous().view(B * K * max_n_refs, -1),
                    ref_text_mask=ref_text_mask.view(B, 1, max_n_refs).expand(-1, K, -1).contiguous().view(B * K * max_n_refs),
                    clip_s=clip_s)
                refclip_s = refclip_s.view(B * K).detach()

            # 2) calcualte reward for baseline (greedy)
            greedy_res = greedy_res.data.cpu().numpy()
            res = decode_sequence(vocab, greedy_res)
            assert len(res) == B, len(res)

            # [B, dim)

            if getattr(opt, 'use_grammar', False) and getattr(opt, 'use_grammar_baseline', False) and not getattr(opt, 'joint_out', False):
                text_pre_feat = clipscore_model.text_extract(res, proj_norm=False)
                
                grammar_logit = clipscore_model.grammar_score_head(text_pre_feat.view(-1, 512))
                grammar_prob_baseline = torch.softmax(grammar_logit, dim=-1)[:, 1]
                grammar_prob_baseline = grammar_prob_baseline.view(B).detach()

                text_feat = clipscore_model.clip_model.text_projection(text_pre_feat)
                text_feat = text_feat / text_feat.norm(dim=-1, keepdim=True)
            else:
                text_feat = clipscore_model.text_extract(res)

            assert text_feat.size() == (B, 512), text_feat.size()
            assert clip_vis_feats.size() == (B, 512), clip_vis_feats.size()

            vis_feat = clip_vis_feats.view(B, 512)

            # [B]
            clip_s_baseline = clipscore_model(text_feat=text_feat, img_feat=vis_feat, mode='clip_s')
            clip_s_baseline = clip_s_baseline.view(B).detach()

            if clipscore_model.mode == 'refclip_s':
                # # [B * n_ref]
                # ref_text_feat = clipscore_model.text_extract(gts)
                # ref_text_mask = torch.tensor(gts_valid_mask, dtype=ref_text_feat.dtype, device=ref_text_feat.device)
                # assert ref_text_feat.size() == (B * max_n_refs, 512), ref_text_feat.size()
                # assert ref_text_mask.size() == (B * max_n_refs), ref_text_mask.size()

                # [B]
                refclip_s_baseline = clipscore_model.calc_refclip_s(
                    text_feat=text_feat, img_feat=vis_feat,
                    ref_text_feat=ref_text_feat,
                    ref_text_mask=ref_text_mask,
                    clip_s=clip_s_baseline)
                refclip_s_baseline = refclip_s_baseline.view(B).detach()

            if clipscore_model.mode == 'clip_s':
                rewards = clip_s - clip_s_baseline.view(B, 1).expand(-1, K).contiguous().flatten()
                unnormalized_mean_reward = clip_s.mean()
            elif clipscore_model.mode == 'refclip_s':
                rewards = refclip_s - refclip_s_baseline.view(B, 1).expand(-1, K).contiguous().flatten()
                unnormalized_mean_reward = refclip_s.mean()
            
            # # [B * K + B, dim)
            # text_feat = clipscore_model.text_extract(res)
            # assert text_feat.size() == (B * K + B, 512), text_feat.size()

            # assert clip_vis_feats.size() == (B, 512), clip_vis_feats.size()

            # # [B, dim] -> [B * K + B, dim]
            # # vis_feat = clip_vis_feats.view(B, 1, -1).expand(-1, K + 1, -1).contiguous().view(B * (K + 1), -1)
            # # vis_feat = clip_vis_feats.view(1, B, -1).expand(K + 1, -1, -1).contiguous().view((K + 1) * B, -1)

            # # [B * K, dim]
            # gen_vis_feat = clip_vis_feats.view(B, 1, -1).expand(-1, K, -1).contiguous().view(B * K, -1)
            # # [B, dim]
            # greedy_vis_feat = clip_vis_feats
            # # [B * K + B, dim]
            # vis_feat = torch.cat([gen_vis_feat, greedy_vis_feat], dim=0)

            # # if clipscore_model.mode == 'clip_s':
            # # [B * K + B, dim]
            # clip_s = clipscore_model(text_feat=text_feat, img_feat=vis_feat)
            # clip_s = clip_s.view(B * K + B).detach()
            
            
            # if clipscore_model.mode == 'refclip_s':
            #     # [B * K, dim]
            #     ref_text_feat = clipscore_model.text_extract(gts)

            #     clipscore_scores = clipscore_model.calc_refclip_s(text_feat=text_feat, img_feat=vis_feat, ref_text_feat=ref_text_feat, clip_s=clip_s)
            #     clipscore_scores = clipscore_scores.view(B * K + B).detach()

            if getattr(opt, 'use_grammar', False) and not getattr(opt, 'joint_out', False):
            
                if getattr(opt, 'use_grammar_baseline', False):
                    grammar_rewards = grammar_prob - grammar_prob_baseline.view(B, 1).expand(-1, K).contiguous().flatten()
                else:
                    grammar_rewards = grammar_prob
            else:
                grammar_rewards = None


        if hasattr(opt, 'verbose') and not opt.verbose:
            pass
        else:
            if clipscore_model.mode == 'clip_s':
                print('CLIP-S:', rewards)
            elif clipscore_model.mode == 'refclip_s':
                print('RefCLIP-S:', rewards)
    else:
        rewards = torch.zeros(B, L)
        unnormalized_mean_reward = None
        grammar_rewards = None
            

    rewards = opt.clipscore_reward_weight * rewards


    # scores = scores[:gen_result_size].reshape(batch_size, seq_per_img) - scores[-batch_size:][:, np.newaxis]
    # scores = scores.reshape(gen_result_size)
    # rewards = np.repeat(scores[:, np.newaxis], gen_result.shape[1], 1)

    # [B, K]
    # scores = scores[:gen_result_size].reshape(B, K) - scores[-B:].unsqueeze(1)

    # [B*K, L]
    # rewards = scores.view(-1, 1).expand(-1, L).contiguous()
    rewards = rewards.view(-1, 1).expand(-1, L).contiguous()

    if getattr(opt, 'use_grammar', False) and not getattr(opt, 'joint_out', False):
        grammar_rewards = grammar_rewards.view(-1, 1).expand(-1, L).contiguous()

    return rewards, unnormalized_mean_reward, grammar_rewards

def get_scores(data_gts, gen_result, opt):
    batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
    seq_per_img = batch_size // len(data_gts)

    res = OrderedDict()
    
    gen_result = gen_result.data.cpu().numpy()
    for i in range(batch_size):
        res[i] = [array_to_str(gen_result[i])]

    gts = OrderedDict()
    for i in range(len(data_gts)):
        gts[i] = [array_to_str(data_gts[i][j]) for j in range(len(data_gts[i]))]

    res_ = [{'image_id':i, 'caption': res[i]} for i in range(batch_size)]
    res__ = {i: res[i] for i in range(batch_size)}
    gts = {i: gts[i // seq_per_img] for i in range(batch_size)}
    if opt.cider_reward_weight > 0:
        _, cider_scores = CiderD_scorer.compute_score(gts, res_)
        # print('Cider scores:', _)
        if hasattr(opt, 'verbose') and not opt.verbose:
            pass
        else:
            print('Cider scores:', _)
    else:
        cider_scores = 0
    if opt.bleu_reward_weight > 0:
        _, bleu_scores = Bleu_scorer.compute_score(gts, res__)
        bleu_scores = np.array(bleu_scores[3])
        # print('Bleu scores:', _[3])
        if hasattr(opt, 'verbose') and not opt.verbose:
            pass
        else:
            print('Bleu scores:', _[3])
    else:
        bleu_scores = 0

    scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores

    return scores

def get_self_cider_scores(data_gts, gen_result, opt):
    batch_size = gen_result.size(0)# batch_size = sample_size * seq_per_img
    seq_per_img = batch_size // len(data_gts)

    res = []
    
    gen_result = gen_result.data.cpu().numpy()
    for i in range(batch_size):
        res.append(array_to_str(gen_result[i]))

    scores = []
    for i in range(len(data_gts)):
        tmp = Cider_scorer.my_self_cider([res[i*seq_per_img:(i+1)*seq_per_img]])
        def get_div(eigvals):
            eigvals = np.clip(eigvals, 0, None)
            return -np.log(np.sqrt(eigvals[-1]) / (np.sqrt(eigvals).sum())) / np.log(len(eigvals))
        scores.append(get_div(np.linalg.eigvalsh(tmp[0]/10)))

    scores = np.array(scores)

    return scores