File size: 3,663 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import re
import numpy as np
import torch
import torch.distributed as dist
import collections
import logging

def get_area(pos):
    """
    Args
        pos: [B, N, 4]
            (x1, x2, y1, y2)

    Return
        area : [B, N]
    """
    # [B, N]
    height = pos[:, :, 3] - pos[:, :, 2]
    width = pos[:, :, 1] - pos[:, :, 0]
    area = height * width
    return area

def get_relative_distance(pos):
    """
    Args
        pos: [B, N, 4]
            (x1, x2, y1, y2)

    Return
        out : [B, N, N, 4]
    """
    # B, N = pos.size()[:-1]

    # [B, N, N, 4]
    relative_distance = pos.unsqueeze(1) - pos.unsqueeze(2)

    return relative_distance


class LossMeter(object):
    def __init__(self, maxlen=100):
        """Computes and stores the running average"""
        self.vals = collections.deque([], maxlen=maxlen)

    def __len__(self):
        return len(self.vals)

    def update(self, new_val):
        self.vals.append(new_val)

    @property
    def val(self):
        return sum(self.vals) / len(self.vals)

    def __repr__(self):
        return str(self.val)


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def load_state_dict(state_dict_path, loc='cpu'):
    state_dict = torch.load(state_dict_path, map_location=loc)
    # Change Multi GPU to single GPU
    original_keys = list(state_dict.keys())
    for key in original_keys:
        if key.startswith("module."):
            new_key = key[len("module."):]
            state_dict[new_key] = state_dict.pop(key)
    return state_dict


def set_global_logging_level(level=logging.ERROR, prefices=[""]):
    """
    Override logging levels of different modules based on their name as a prefix.
    It needs to be invoked after the modules have been loaded so that their loggers have been initialized.

    Args:
        - level: desired level. e.g. logging.INFO. Optional. Default is logging.ERROR
        - prefices: list of one or more str prefices to match (e.g. ["transformers", "torch"]). Optional.
          Default is `[""]` to match all active loggers.
          The match is a case-sensitive `module_name.startswith(prefix)`
    """
    prefix_re = re.compile(fr'^(?:{ "|".join(prefices) })')
    for name in logging.root.manager.loggerDict:
        if re.match(prefix_re, name):
            logging.getLogger(name).setLevel(level)


def get_iou(anchors, gt_boxes):
    """
    anchors: (N, 4) torch floattensor
    gt_boxes: (K, 4) torch floattensor
    overlaps: (N, K) ndarray of overlap between boxes and query_boxes
    """
    N = anchors.size(0)

    if gt_boxes.size() == (4,):
        gt_boxes = gt_boxes.view(1, 4)
    K = gt_boxes.size(0)

    gt_boxes_area = (
        (gt_boxes[:, 2] - gt_boxes[:, 0] + 1) *
        (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)
    ).view(1, K)

    anchors_area = (
        (anchors[:, 2] - anchors[:, 0] + 1) *
        (anchors[:, 3] - anchors[:, 1] + 1)
    ).view(N, 1)

    boxes = anchors.view(N, 1, 4).expand(N, K, 4)
    query_boxes = gt_boxes.view(1, K, 4).expand(N, K, 4)

    iw = (
        torch.min(boxes[:, :, 2], query_boxes[:, :, 2])
        - torch.max(boxes[:, :, 0], query_boxes[:, :, 0])
        + 1
    )
    iw[iw < 0] = 0

    ih = (
        torch.min(boxes[:, :, 3], query_boxes[:, :, 3])
        - torch.max(boxes[:, :, 1], query_boxes[:, :, 1])
        + 1
    )
    ih[ih < 0] = 0

    ua = anchors_area + gt_boxes_area - (iw * ih)
    overlaps = iw * ih / ua

    return overlaps


def xywh_to_xyxy(boxes):
    """Convert [x y w h] box format to [x1 y1 x2 y2] format."""
    return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))