File size: 7,167 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# copy from https://github.com/Lyken17/Efficient-PyTorch/tools

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import os.path as osp
import os, sys
import os.path as osp
from PIL import Image
import six
import string

from lmdbdict import lmdbdict
from lmdbdict.methods import DUMPS_FUNC, LOADS_FUNC
import pickle
import tqdm
import numpy as np
import argparse
import json

import torch
import torch.utils.data as data
from torch.utils.data import DataLoader

import csv
csv.field_size_limit(sys.maxsize)
FIELDNAMES = ['image_id', 'status']

class FolderLMDB(data.Dataset):
    def __init__(self, db_path, fn_list=None):
        self.db_path = db_path
        self.lmdb = lmdbdict(db_path, unsafe=True)
        self.lmdb._key_dumps = DUMPS_FUNC['ascii']
        self.lmdb._value_loads = LOADS_FUNC['identity']
        if fn_list is not None:
            self.length = len(fn_list)
            self.keys = fn_list
        else:
            raise Error

    def __getitem__(self, index):
        byteflow = self.lmdb[self.keys[index]]

        # load image
        imgbuf = byteflow
        buf = six.BytesIO()
        buf.write(imgbuf)
        buf.seek(0)
        try:
            if args.extension == '.npz':
                feat = np.load(buf)['feat']
            else:
                feat = np.load(buf)
        except Exception as e:
            print(self.keys[index], e)
            return None

        return feat

    def __len__(self):
        return self.length

    def __repr__(self):
        return self.__class__.__name__ + ' (' + self.db_path + ')'


def make_dataset(dir, extension):
    images = []
    dir = os.path.expanduser(dir)
    for root, _, fnames in sorted(os.walk(dir)):
        for fname in sorted(fnames):
            if has_file_allowed_extension(fname, [extension]):
                path = os.path.join(root, fname)
                images.append(path)

    return images


def raw_reader(path):
    with open(path, 'rb') as f:
        bin_data = f.read()
    return bin_data


def raw_npz_reader(path):
    with open(path, 'rb') as f:
        bin_data = f.read()
    try:
        npz_data = np.load(six.BytesIO(bin_data))['feat']
    except Exception as e:
        print(path)
        npz_data = None
        print(e)
    return bin_data, npz_data


def raw_npy_reader(path):
    with open(path, 'rb') as f:
        bin_data = f.read()
    try:
        npy_data = np.load(six.BytesIO(bin_data))
    except Exception as e:
        print(path)
        npy_data = None
        print(e)
    return bin_data, npy_data


class Folder(data.Dataset):

    def __init__(self, root, loader, extension, fn_list=None):
        super(Folder, self).__init__()
        self.root = root
        if fn_list:
            samples = [os.path.join(root, str(_)+extension) for _ in fn_list]
        else:
            samples = make_dataset(self.root, extension)

        self.loader = loader
        self.extension = extension
        self.samples = samples

    def __getitem__(self, index):
        """
        Args:
            index (int): Index
        Returns:
            tuple: (sample, target) where target is class_index of the target class.
        """
        path = self.samples[index]
        sample = self.loader(path)

        return (path.split('/')[-1].split('.')[0],) + sample

    def __len__(self):
        return len(self.samples)


def folder2lmdb(dpath, fn_list, write_frequency=5000):
    directory = osp.expanduser(osp.join(dpath))
    print("Loading dataset from %s" % directory)
    if args.extension == '.npz':
        dataset = Folder(directory, loader=raw_npz_reader, extension='.npz',
                         fn_list=fn_list)
    else:
        dataset = Folder(directory, loader=raw_npy_reader, extension='.npy',
                         fn_list=fn_list)
    data_loader = DataLoader(dataset, num_workers=16, collate_fn=lambda x: x)

    # lmdb_path = osp.join(dpath, "%s.lmdb" % (directory.split('/')[-1]))
    lmdb_path = osp.join("%s.lmdb" % (directory))
    isdir = os.path.isdir(lmdb_path)

    print("Generate LMDB to %s" % lmdb_path)
    db = lmdbdict(lmdb_path, mode='w', key_method='ascii', value_method='identity')

    tsvfile = open(args.output_file, 'a')
    writer = csv.DictWriter(tsvfile, delimiter='\t', fieldnames=FIELDNAMES)
    names = []
    all_keys = []
    for idx, data in enumerate(tqdm.tqdm(data_loader)):
        # print(type(data), data)
        name, byte, npz = data[0]
        if npz is not None:
            db[name] = byte
            all_keys.append(name)
        names.append({'image_id': name, 'status': str(npz is not None)})
        if idx % write_frequency == 0:
            print("[%d/%d]" % (idx, len(data_loader)))
            print('writing')
            db.flush()
            # write in tsv
            for name in names:
                writer.writerow(name)
            names = []
            tsvfile.flush()
            print('writing finished')
    # write all keys
    # txn.put("keys".encode(), pickle.dumps(all_keys))
    # # finish iterating through dataset
    # txn.commit()
    for name in names:
        writer.writerow(name)
    tsvfile.flush()
    tsvfile.close()

    print("Flushing database ...")
    db.flush()
    del db

def parse_args():
    """
    Parse input arguments
    """
    parser = argparse.ArgumentParser(description='Generate bbox output from a Fast R-CNN network')
    # parser.add_argument('--json)
    parser.add_argument('--input_json', default='./data/dataset_coco.json', type=str)
    parser.add_argument('--output_file', default='.dump_cache.tsv', type=str)
    parser.add_argument('--folder', default='./data/cocobu_att', type=str)
    parser.add_argument('--extension', default='.npz', type=str)

    args = parser.parse_args()
    return args

if __name__ == "__main__":
    global args
    args = parse_args()

    args.output_file += args.folder.split('/')[-1]
    if args.folder.find('/') > 0:
        args.output_file = args.folder[:args.folder.rfind('/')+1]+args.output_file
    print(args.output_file)

    img_list = json.load(open(args.input_json, 'r'))['images']
    fn_list = [str(_['cocoid']) for _ in img_list]
    found_ids = set()
    try:
        with open(args.output_file, 'r') as tsvfile:
            reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames=FIELDNAMES)
            for item in reader:
                if item['status'] == 'True':
                    found_ids.add(item['image_id'])
    except:
        pass
    fn_list = [_ for _ in fn_list if _ not in found_ids]
    folder2lmdb(args.folder, fn_list)

    # Test existing.
    found_ids = set()
    with open(args.output_file, 'r') as tsvfile:
        reader = csv.DictReader(tsvfile, delimiter='\t', fieldnames=FIELDNAMES)
        for item in reader:
            if item['status'] == 'True':
                found_ids.add(item['image_id'])

    folder_dataset = FolderLMDB(args.folder+'.lmdb', list(found_ids))
    data_loader = DataLoader(folder_dataset, num_workers=16, collate_fn=lambda x: x)
    for data in tqdm.tqdm(data_loader):
        assert data[0] is not None