Spaces:
Runtime error
Runtime error
File size: 8,488 Bytes
c80917c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
"""
Preprocess a raw json dataset into hdf5/json files for use in data_loader.py
Input: json file that has the form
[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...]
example element in this list would look like
{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895}
This script reads this json, does some basic preprocessing on the captions
(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays
Output: a json file and an hdf5 file
The hdf5 file contains several fields:
/labels is (M,max_length) uint32 array of encoded labels, zero padded
/label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the
first and last indices (in range 1..M) of labels for each image
/label_length stores the length of the sequence for each of the M sequences
The json file has a dict that contains:
- an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed
- an 'images' field that is a list holding auxiliary information for each image,
such as in particular the 'split' it was assigned to.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import json
import argparse
from random import shuffle, seed
import string
# non-standard dependencies:
import h5py
import numpy as np
import torch
import torchvision.models as models
import skimage.io
from PIL import Image
def build_vocab(imgs, params):
count_thr = params['word_count_threshold']
# count up the number of words
counts = {}
for img in imgs:
for sent in img['sentences']:
for w in sent['tokens']:
counts[w] = counts.get(w, 0) + 1
cw = sorted([(count,w) for w,count in counts.items()], reverse=True)
print('top words and their counts:')
print('\n'.join(map(str,cw[:20])))
# print some stats
total_words = sum(counts.values())
print('total words:', total_words)
bad_words = [w for w,n in counts.items() if n <= count_thr]
vocab = [w for w,n in counts.items() if n > count_thr]
bad_count = sum(counts[w] for w in bad_words)
print('number of bad words: %d/%d = %.2f%%' % (len(bad_words), len(counts), len(bad_words)*100.0/len(counts)))
print('number of words in vocab would be %d' % (len(vocab), ))
print('number of UNKs: %d/%d = %.2f%%' % (bad_count, total_words, bad_count*100.0/total_words))
# lets look at the distribution of lengths as well
sent_lengths = {}
for img in imgs:
for sent in img['sentences']:
txt = sent['tokens']
nw = len(txt)
sent_lengths[nw] = sent_lengths.get(nw, 0) + 1
max_len = max(sent_lengths.keys())
print('max length sentence in raw data: ', max_len)
print('sentence length distribution (count, number of words):')
sum_len = sum(sent_lengths.values())
for i in range(max_len+1):
print('%2d: %10d %f%%' % (i, sent_lengths.get(i,0), sent_lengths.get(i,0)*100.0/sum_len))
# lets now produce the final annotations
if bad_count > 0:
# additional special UNK token we will use below to map infrequent words to
print('inserting the special UNK token')
vocab.append('UNK')
for img in imgs:
img['final_captions'] = []
for sent in img['sentences']:
txt = sent['tokens']
caption = [w if counts.get(w,0) > count_thr else 'UNK' for w in txt]
img['final_captions'].append(caption)
return vocab
def encode_captions(imgs, params, wtoi):
"""
encode all captions into one large array, which will be 1-indexed.
also produces label_start_ix and label_end_ix which store 1-indexed
and inclusive (Lua-style) pointers to the first and last caption for
each image in the dataset.
"""
max_length = params['max_length']
N = len(imgs)
M = sum(len(img['final_captions']) for img in imgs) # total number of captions
label_arrays = []
label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed
label_end_ix = np.zeros(N, dtype='uint32')
label_length = np.zeros(M, dtype='uint32')
caption_counter = 0
counter = 1
for i,img in enumerate(imgs):
n = len(img['final_captions'])
assert n > 0, 'error: some image has no captions'
Li = np.zeros((n, max_length), dtype='uint32')
for j,s in enumerate(img['final_captions']):
label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence
caption_counter += 1
for k,w in enumerate(s):
if k < max_length:
Li[j,k] = wtoi[w]
# note: word indices are 1-indexed, and captions are padded with zeros
label_arrays.append(Li)
label_start_ix[i] = counter
label_end_ix[i] = counter + n - 1
counter += n
L = np.concatenate(label_arrays, axis=0) # put all the labels together
assert L.shape[0] == M, 'lengths don\'t match? that\'s weird'
assert np.all(label_length > 0), 'error: some caption had no words?'
print('encoded captions to array of size ', L.shape)
return L, label_start_ix, label_end_ix, label_length
def main(params):
imgs = json.load(open(params['input_json'], 'r'))
imgs = imgs['images']
seed(123) # make reproducible
# create the vocab
vocab = build_vocab(imgs, params)
itow = {i+1:w for i,w in enumerate(vocab)} # a 1-indexed vocab translation table
wtoi = {w:i+1 for i,w in enumerate(vocab)} # inverse table
# encode captions in large arrays, ready to ship to hdf5 file
L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi)
# create output h5 file
N = len(imgs)
f_lb = h5py.File(params['output_h5']+'_label.h5', "w")
f_lb.create_dataset("labels", dtype='uint32', data=L)
f_lb.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix)
f_lb.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix)
f_lb.create_dataset("label_length", dtype='uint32', data=label_length)
f_lb.close()
# create output json file
out = {}
out['ix_to_word'] = itow # encode the (1-indexed) vocab
out['images'] = []
for i,img in enumerate(imgs):
jimg = {}
jimg['split'] = img['split']
if 'filename' in img: jimg['file_path'] = os.path.join(img.get('filepath', ''), img['filename']) # copy it over, might need
if 'cocoid' in img:
jimg['id'] = img['cocoid'] # copy over & mantain an id, if present (e.g. coco ids, useful)
elif 'imgid' in img:
jimg['id'] = img['imgid']
if params['images_root'] != '':
with Image.open(os.path.join(params['images_root'], img['filepath'], img['filename'])) as _img:
jimg['width'], jimg['height'] = _img.size
out['images'].append(jimg)
json.dump(out, open(params['output_json'], 'w'))
print('wrote ', params['output_json'])
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# input json
parser.add_argument('--input_json', required=True, help='input json file to process into hdf5')
parser.add_argument('--output_json', default='data.json', help='output json file')
parser.add_argument('--output_h5', default='data', help='output h5 file')
parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json')
# options
parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.')
parser.add_argument('--word_count_threshold', default=5, type=int, help='only words that occur more than this number of times will be put in vocab')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
print('parsed input parameters:')
print(json.dumps(params, indent = 2))
main(params)
|