File size: 45,263 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# This file contains Att2in2, AdaAtt, AdaAttMO, UpDown model

# AdaAtt is from Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning
# https://arxiv.org/abs/1612.01887
# AdaAttMO is a modified version with maxout lstm

# Att2in is from Self-critical Sequence Training for Image Captioning
# https://arxiv.org/abs/1612.00563
# In this file we only have Att2in2, which is a slightly different version of att2in,
# in which the img feature embedding and word embedding is the same as what in adaatt.

# UpDown is from Bottom-Up and Top-Down Attention for Image Captioning and VQA
# https://arxiv.org/abs/1707.07998
# However, it may not be identical to the author's architecture.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import utils
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence

from .CaptionModel import CaptionModel

bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['the']

def sort_pack_padded_sequence(input, lengths):
    sorted_lengths, indices = torch.sort(lengths, descending=True)
    # tmp = pack_padded_sequence(input[indices], sorted_lengths, batch_first=True)
    tmp = pack_padded_sequence(input[indices], sorted_lengths.cpu(), batch_first=True)
    inv_ix = indices.clone()
    inv_ix[indices] = torch.arange(0,len(indices)).type_as(inv_ix)
    return tmp, inv_ix

def pad_unsort_packed_sequence(input, inv_ix):
    tmp, _ = pad_packed_sequence(input, batch_first=True)
    tmp = tmp[inv_ix]
    return tmp

def pack_wrapper(module, att_feats, att_masks):
    if att_masks is not None:
        packed, inv_ix = sort_pack_padded_sequence(att_feats, att_masks.data.long().sum(1))
        return pad_unsort_packed_sequence(PackedSequence(module(packed[0]), packed[1]), inv_ix)
    else:
        return module(att_feats)

class AttModel(CaptionModel):
    def __init__(self, opt):
        super(AttModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        #self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = getattr(opt, 'max_length', 20) or opt.seq_length # maximum sample length
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_hid_size = opt.att_hid_size

        self.bos_idx = getattr(opt, 'bos_idx', 0)
        self.eos_idx = getattr(opt, 'eos_idx', 0)
        self.pad_idx = getattr(opt, 'pad_idx', 0)

        self.use_bn = getattr(opt, 'use_bn', 0)

        self.ss_prob = 0.0 # Schedule sampling probability

        self.embed = nn.Sequential(nn.Embedding(self.vocab_size + 1, self.input_encoding_size),
                                nn.ReLU(),
                                nn.Dropout(self.drop_prob_lm))
        self.fc_embed = nn.Sequential(nn.Linear(self.fc_feat_size, self.rnn_size),
                                    nn.ReLU(),
                                    nn.Dropout(self.drop_prob_lm))
        self.att_embed = nn.Sequential(*(
                                    ((nn.BatchNorm1d(self.att_feat_size),) if self.use_bn else ())+
                                    (nn.Linear(self.att_feat_size, self.rnn_size),
                                    nn.ReLU(),
                                    nn.Dropout(self.drop_prob_lm))+
                                    ((nn.BatchNorm1d(self.rnn_size),) if self.use_bn==2 else ())))

        self.logit_layers = getattr(opt, 'logit_layers', 1)
        if self.logit_layers == 1:
            self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
        else:
            self.logit = [[nn.Linear(self.rnn_size, self.rnn_size), nn.ReLU(), nn.Dropout(0.5)] for _ in range(opt.logit_layers - 1)]
            self.logit = nn.Sequential(*(reduce(lambda x,y:x+y, self.logit) + [nn.Linear(self.rnn_size, self.vocab_size + 1)]))
        self.ctx2att = nn.Linear(self.rnn_size, self.att_hid_size)

        # For remove bad endding
        self.vocab = opt.vocab
        self.bad_endings_ix = [int(k) for k,v in self.vocab.items() if v in bad_endings]

    def init_hidden(self, bsz):
        weight = self.logit.weight \
                 if hasattr(self.logit, "weight") \
                 else self.logit[0].weight
        return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
                weight.new_zeros(self.num_layers, bsz, self.rnn_size))

    def clip_att(self, att_feats, att_masks):
        # Clip the length of att_masks and att_feats to the maximum length
        if att_masks is not None:
            max_len = att_masks.data.long().sum(1).max()
            att_feats = att_feats[:, :max_len].contiguous()
            att_masks = att_masks[:, :max_len].contiguous()
        return att_feats, att_masks

    def _prepare_feature(self, fc_feats, att_feats, att_masks):
        att_feats, att_masks = self.clip_att(att_feats, att_masks)

        # embed fc and att feats
        fc_feats = self.fc_embed(fc_feats)
        att_feats = pack_wrapper(self.att_embed, att_feats, att_masks)

        # Project the attention feats first to reduce memory and computation comsumptions.
        p_att_feats = self.ctx2att(att_feats)

        return fc_feats, att_feats, p_att_feats, att_masks

    def _forward(self, fc_feats, att_feats, seq, att_masks=None):
        batch_size = fc_feats.size(0)
        if seq.ndim == 3:  # B * seq_per_img * seq_len
            seq = seq.reshape(-1, seq.shape[2])
        seq_per_img = seq.shape[0] // batch_size
        state = self.init_hidden(batch_size*seq_per_img)

        outputs = fc_feats.new_zeros(batch_size*seq_per_img, seq.size(1), self.vocab_size+1)

        # Prepare the features
        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)
        # pp_att_feats is used for attention, we cache it in advance to reduce computation cost

        if seq_per_img > 1:
            p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(seq_per_img,
                [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
            )

        for i in range(seq.size(1)):
            if self.training and i >= 1 and self.ss_prob > 0.0: # otherwiste no need to sample
                sample_prob = fc_feats.new(batch_size*seq_per_img).uniform_(0, 1)
                sample_mask = sample_prob < self.ss_prob
                if sample_mask.sum() == 0:
                    it = seq[:, i].clone()
                else:
                    sample_ind = sample_mask.nonzero().view(-1)
                    it = seq[:, i].data.clone()
                    prob_prev = torch.exp(outputs[:, i-1].detach()) # fetch prev distribution: shape Nx(M+1)
                    it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
            else:
                it = seq[:, i].clone()          
            # break if all the sequences end
            if i >= 1 and seq[:, i].sum() == 0:
                break

            output, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)
            outputs[:, i] = output

        return outputs

    def get_logprobs_state(self, it, fc_feats, att_feats, p_att_feats, att_masks, state, output_logsoftmax=1):
        # 'it' contains a word index
        xt = self.embed(it)

        output, state = self.core(xt, fc_feats, att_feats, p_att_feats, state, att_masks)
        if output_logsoftmax:
            logprobs = F.log_softmax(self.logit(output), dim=1)
        else:
            logprobs = self.logit(output)

        return logprobs, state

    def _old_sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        sample_n = opt.get('sample_n', 10)
        # when sample_n == beam_size then each beam is a sample.
        assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
        batch_size = fc_feats.size(0)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            state = self.init_hidden(beam_size)
            tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks = utils.repeat_tensors(beam_size,
                [p_fc_feats[k:k+1], p_att_feats[k:k+1], pp_att_feats[k:k+1], p_att_masks[k:k+1] if att_masks is not None else None]
            )

            for t in range(1):
                if t == 0: # input <bos>
                    it = fc_feats.new_full([beam_size], self.bos_idx, dtype=torch.long)

                logprobs, state = self.get_logprobs_state(it, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, state)

            self.done_beams[k] = self.old_beam_search(state, logprobs, tmp_fc_feats, tmp_att_feats, tmp_p_att_feats, tmp_att_masks, opt=opt)
            if sample_n == beam_size:
                for _n in range(sample_n):
                    seq[k*sample_n+_n, :] = self.done_beams[k][_n]['seq']
                    seqLogprobs[k*sample_n+_n, :] = self.done_beams[k][_n]['logps']
            else:
                seq[k, :] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
                seqLogprobs[k, :] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq, seqLogprobs


    def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        sample_n = opt.get('sample_n', 10)
        # when sample_n == beam_size then each beam is a sample.
        assert sample_n == 1 or sample_n == beam_size // group_size, 'when beam search, sample_n == 1 or beam search'
        batch_size = fc_feats.size(0)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        
        state = self.init_hidden(batch_size)

        # first step, feed bos
        it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
        logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(beam_size,
            [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
        )
        self.done_beams = self.beam_search(state, logprobs, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, opt=opt)
        for k in range(batch_size):
            if sample_n == beam_size:
                for _n in range(sample_n):
                    seq_len = self.done_beams[k][_n]['seq'].shape[0]
                    seq[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['seq']
                    seqLogprobs[k*sample_n+_n, :seq_len] = self.done_beams[k][_n]['logps']
            else:
                seq_len = self.done_beams[k][0]['seq'].shape[0]
                seq[k, :seq_len] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
                seqLogprobs[k, :seq_len] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq, seqLogprobs

    def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):

        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        sample_n = int(opt.get('sample_n', 1))
        group_size = opt.get('group_size', 1)
        output_logsoftmax = opt.get('output_logsoftmax', 1)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)
        remove_bad_endings = opt.get('remove_bad_endings', 0)
        if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
            return self._sample_beam(fc_feats, att_feats, att_masks, opt)
        if group_size > 1:
            return self._diverse_sample(fc_feats, att_feats, att_masks, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size*sample_n)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        if sample_n > 1:
            p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = utils.repeat_tensors(sample_n,
                [p_fc_feats, p_att_feats, pp_att_feats, p_att_masks]
            )

        trigrams = [] # will be a list of batch_size dictionaries
        
        seq = fc_feats.new_full((batch_size*sample_n, self.seq_length), self.pad_idx, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size*sample_n, self.seq_length, self.vocab_size + 1)
        for t in range(self.seq_length + 1):
            if t == 0: # input <bos>
                it = fc_feats.new_full([batch_size*sample_n], self.bos_idx, dtype=torch.long)

            logprobs, state = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state, output_logsoftmax=output_logsoftmax)
            
            if decoding_constraint and t > 0:
                tmp = logprobs.new_zeros(logprobs.size())
                tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
                logprobs = logprobs + tmp

            if remove_bad_endings and t > 0:
                tmp = logprobs.new_zeros(logprobs.size())
                prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
                # Make it impossible to generate bad_endings
                tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
                logprobs = logprobs + tmp

            # Mess with trigrams
            # Copy from https://github.com/lukemelas/image-paragraph-captioning
            if block_trigrams and t >= 3:
                # Store trigram generated at last step
                prev_two_batch = seq[:,t-3:t-1]
                for i in range(batch_size): # = seq.size(0)
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    current  = seq[i][t-1]
                    if t == 3: # initialize
                        trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
                    elif t > 3:
                        if prev_two in trigrams[i]: # add to list
                            trigrams[i][prev_two].append(current)
                        else: # create list
                            trigrams[i][prev_two] = [current]
                # Block used trigrams at next step
                prev_two_batch = seq[:,t-2:t]
                mask = torch.zeros(logprobs.size(), requires_grad=False).to(logprobs.device) # batch_size x vocab_size
                for i in range(batch_size):
                    prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                    if prev_two in trigrams[i]:
                        for j in trigrams[i][prev_two]:
                            mask[i,j] += 1
                # Apply mask to log probs
                #logprobs = logprobs - (mask * 1e9)
                alpha = 2.0 # = 4
                logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)

            # sample the next word
            if t == self.seq_length: # skip if we achieve maximum length
                break
            it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, temperature)

            # stop when all finished
            if t == 0:
                unfinished = it != self.eos_idx
            else:
                it[~unfinished] = self.pad_idx # This allows eos_idx not being overwritten to 0
                logprobs = logprobs * unfinished.unsqueeze(1).to(logprobs)
                unfinished = unfinished & (it != self.eos_idx)
            seq[:,t] = it
            seqLogprobs[:,t] = logprobs
            # quit loop if all sequences have finished
            if unfinished.sum() == 0:
                break

        return seq, seqLogprobs

    def _diverse_sample(self, fc_feats, att_feats, att_masks=None, opt={}):

        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        group_size = opt.get('group_size', 1)
        diversity_lambda = opt.get('diversity_lambda', 0.5)
        decoding_constraint = opt.get('decoding_constraint', 0)
        block_trigrams = opt.get('block_trigrams', 0)
        remove_bad_endings = opt.get('remove_bad_endings', 0)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)

        p_fc_feats, p_att_feats, pp_att_feats, p_att_masks = self._prepare_feature(fc_feats, att_feats, att_masks)

        trigrams_table = [[] for _ in range(group_size)] # will be a list of batch_size dictionaries

        seq_table = [fc_feats.new_full((batch_size, self.seq_length), self.pad_idx, dtype=torch.long) for _ in range(group_size)]
        seqLogprobs_table = [fc_feats.new_zeros(batch_size, self.seq_length) for _ in range(group_size)]
        state_table = [self.init_hidden(batch_size) for _ in range(group_size)]

        for tt in range(self.seq_length + group_size):
            for divm in range(group_size):
                t = tt - divm
                seq = seq_table[divm]
                seqLogprobs = seqLogprobs_table[divm]
                trigrams = trigrams_table[divm]
                if t >= 0 and t <= self.seq_length-1:
                    if t == 0: # input <bos>
                        it = fc_feats.new_full([batch_size], self.bos_idx, dtype=torch.long)
                    else:
                        it = seq[:, t-1] # changed

                    logprobs, state_table[divm] = self.get_logprobs_state(it, p_fc_feats, p_att_feats, pp_att_feats, p_att_masks, state_table[divm]) # changed
                    logprobs = F.log_softmax(logprobs / temperature, dim=-1)

                    # Add diversity
                    if divm > 0:
                        unaug_logprobs = logprobs.clone()
                        for prev_choice in range(divm):
                            prev_decisions = seq_table[prev_choice][:, t]
                            logprobs[:, prev_decisions] = logprobs[:, prev_decisions] - diversity_lambda
                    
                    if decoding_constraint and t > 0:
                        tmp = logprobs.new_zeros(logprobs.size())
                        tmp.scatter_(1, seq[:,t-1].data.unsqueeze(1), float('-inf'))
                        logprobs = logprobs + tmp

                    if remove_bad_endings and t > 0:
                        tmp = logprobs.new_zeros(logprobs.size())
                        prev_bad = np.isin(seq[:,t-1].data.cpu().numpy(), self.bad_endings_ix)
                        # Impossible to generate remove_bad_endings
                        tmp[torch.from_numpy(prev_bad.astype('uint8')), 0] = float('-inf')
                        logprobs = logprobs + tmp

                    # Mess with trigrams
                    if block_trigrams and t >= 3:
                        # Store trigram generated at last step
                        prev_two_batch = seq[:,t-3:t-1]
                        for i in range(batch_size): # = seq.size(0)
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            current  = seq[i][t-1]
                            if t == 3: # initialize
                                trigrams.append({prev_two: [current]}) # {LongTensor: list containing 1 int}
                            elif t > 3:
                                if prev_two in trigrams[i]: # add to list
                                    trigrams[i][prev_two].append(current)
                                else: # create list
                                    trigrams[i][prev_two] = [current]
                        # Block used trigrams at next step
                        prev_two_batch = seq[:,t-2:t]
                        mask = torch.zeros(logprobs.size(), requires_grad=False).cuda() # batch_size x vocab_size
                        for i in range(batch_size):
                            prev_two = (prev_two_batch[i][0].item(), prev_two_batch[i][1].item())
                            if prev_two in trigrams[i]:
                                for j in trigrams[i][prev_two]:
                                    mask[i,j] += 1
                        # Apply mask to log probs
                        #logprobs = logprobs - (mask * 1e9)
                        alpha = 2.0 # = 4
                        logprobs = logprobs + (mask * -0.693 * alpha) # ln(1/2) * alpha (alpha -> infty works best)

                    it, sampleLogprobs = self.sample_next_word(logprobs, sample_method, 1)

                    # stop when all finished
                    if t == 0:
                        unfinished = it != self.eos_idx
                    else:
                        unfinished = (seq[:,t-1] != self.pad_idx) & (seq[:,t-1] != self.eos_idx)
                        it[~unfinished] = self.pad_idx
                        unfinished = unfinished & (it != self.eos_idx) # changed
                    seq[:,t] = it
                    seqLogprobs[:,t] = sampleLogprobs.view(-1)

        return torch.stack(seq_table, 1).reshape(batch_size * group_size, -1), torch.stack(seqLogprobs_table, 1).reshape(batch_size * group_size, -1)

class AdaAtt_lstm(nn.Module):
    def __init__(self, opt, use_maxout=True):
        super(AdaAtt_lstm, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        #self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_hid_size = opt.att_hid_size

        self.use_maxout = use_maxout

        # Build a LSTM
        self.w2h = nn.Linear(self.input_encoding_size, (4+(use_maxout==True)) * self.rnn_size)
        self.v2h = nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size)

        self.i2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers - 1)])
        self.h2h = nn.ModuleList([nn.Linear(self.rnn_size, (4+(use_maxout==True)) * self.rnn_size) for _ in range(self.num_layers)])

        # Layers for getting the fake region
        if self.num_layers == 1:
            self.r_w2h = nn.Linear(self.input_encoding_size, self.rnn_size)
            self.r_v2h = nn.Linear(self.rnn_size, self.rnn_size)
        else:
            self.r_i2h = nn.Linear(self.rnn_size, self.rnn_size)
        self.r_h2h = nn.Linear(self.rnn_size, self.rnn_size)


    def forward(self, xt, img_fc, state):

        hs = []
        cs = []
        for L in range(self.num_layers):
            # c,h from previous timesteps
            prev_h = state[0][L]
            prev_c = state[1][L]
            # the input to this layer
            if L == 0:
                x = xt
                i2h = self.w2h(x) + self.v2h(img_fc)
            else:
                x = hs[-1]
                x = F.dropout(x, self.drop_prob_lm, self.training)
                i2h = self.i2h[L-1](x)

            all_input_sums = i2h+self.h2h[L](prev_h)

            sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
            sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
            # decode the gates
            in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
            forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
            out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)
            # decode the write inputs
            if not self.use_maxout:
                in_transform = torch.tanh(all_input_sums.narrow(1, 3 * self.rnn_size, self.rnn_size))
            else:
                in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
                in_transform = torch.max(\
                    in_transform.narrow(1, 0, self.rnn_size),
                    in_transform.narrow(1, self.rnn_size, self.rnn_size))
            # perform the LSTM update
            next_c = forget_gate * prev_c + in_gate * in_transform
            # gated cells form the output
            tanh_nex_c = torch.tanh(next_c)
            next_h = out_gate * tanh_nex_c
            if L == self.num_layers-1:
                if L == 0:
                    i2h = self.r_w2h(x) + self.r_v2h(img_fc)
                else:
                    i2h = self.r_i2h(x)
                n5 = i2h+self.r_h2h(prev_h)
                fake_region = torch.sigmoid(n5) * tanh_nex_c

            cs.append(next_c)
            hs.append(next_h)

        # set up the decoder
        top_h = hs[-1]
        top_h = F.dropout(top_h, self.drop_prob_lm, self.training)
        fake_region = F.dropout(fake_region, self.drop_prob_lm, self.training)

        state = (torch.cat([_.unsqueeze(0) for _ in hs], 0), 
                torch.cat([_.unsqueeze(0) for _ in cs], 0))
        return top_h, fake_region, state

class AdaAtt_attention(nn.Module):
    def __init__(self, opt):
        super(AdaAtt_attention, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        #self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.drop_prob_lm = opt.drop_prob_lm
        self.att_hid_size = opt.att_hid_size

        # fake region embed
        self.fr_linear = nn.Sequential(
            nn.Linear(self.rnn_size, self.input_encoding_size),
            nn.ReLU(), 
            nn.Dropout(self.drop_prob_lm))
        self.fr_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)

        # h out embed
        self.ho_linear = nn.Sequential(
            nn.Linear(self.rnn_size, self.input_encoding_size),
            nn.Tanh(), 
            nn.Dropout(self.drop_prob_lm))
        self.ho_embed = nn.Linear(self.input_encoding_size, self.att_hid_size)

        self.alpha_net = nn.Linear(self.att_hid_size, 1)
        self.att2h = nn.Linear(self.rnn_size, self.rnn_size)

    def forward(self, h_out, fake_region, conv_feat, conv_feat_embed, att_masks=None):

        # View into three dimensions
        att_size = conv_feat.numel() // conv_feat.size(0) // self.rnn_size
        conv_feat = conv_feat.view(-1, att_size, self.rnn_size)
        conv_feat_embed = conv_feat_embed.view(-1, att_size, self.att_hid_size)

        # view neighbor from bach_size * neighbor_num x rnn_size to bach_size x rnn_size * neighbor_num
        fake_region = self.fr_linear(fake_region)
        fake_region_embed = self.fr_embed(fake_region)

        h_out_linear = self.ho_linear(h_out)
        h_out_embed = self.ho_embed(h_out_linear)

        txt_replicate = h_out_embed.unsqueeze(1).expand(h_out_embed.size(0), att_size + 1, h_out_embed.size(1))

        img_all = torch.cat([fake_region.view(-1,1,self.input_encoding_size), conv_feat], 1)
        img_all_embed = torch.cat([fake_region_embed.view(-1,1,self.input_encoding_size), conv_feat_embed], 1)

        hA = torch.tanh(img_all_embed + txt_replicate)
        hA = F.dropout(hA,self.drop_prob_lm, self.training)
        
        hAflat = self.alpha_net(hA.view(-1, self.att_hid_size))
        PI = F.softmax(hAflat.view(-1, att_size + 1), dim=1)

        if att_masks is not None:
            att_masks = att_masks.view(-1, att_size)
            PI = PI * torch.cat([att_masks[:,:1], att_masks], 1) # assume one one at the first time step.
            PI = PI / PI.sum(1, keepdim=True)

        visAtt = torch.bmm(PI.unsqueeze(1), img_all)
        visAttdim = visAtt.squeeze(1)

        atten_out = visAttdim + h_out_linear

        h = torch.tanh(self.att2h(atten_out))
        h = F.dropout(h, self.drop_prob_lm, self.training)
        return h

class AdaAttCore(nn.Module):
    def __init__(self, opt, use_maxout=False):
        super(AdaAttCore, self).__init__()
        self.lstm = AdaAtt_lstm(opt, use_maxout)
        self.attention = AdaAtt_attention(opt)

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        h_out, p_out, state = self.lstm(xt, fc_feats, state)
        atten_out = self.attention(h_out, p_out, att_feats, p_att_feats, att_masks)
        return atten_out, state

class UpDownCore(nn.Module):
    def __init__(self, opt, use_maxout=False):
        super(UpDownCore, self).__init__()
        self.drop_prob_lm = opt.drop_prob_lm

        self.att_lstm = nn.LSTMCell(opt.input_encoding_size + opt.rnn_size * 2, opt.rnn_size) # we, fc, h^2_t-1
        self.lang_lstm = nn.LSTMCell(opt.rnn_size * 2, opt.rnn_size) # h^1_t, \hat v
        self.attention = Attention(opt)

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        prev_h = state[0][-1]
        att_lstm_input = torch.cat([prev_h, fc_feats, xt], 1)

        h_att, c_att = self.att_lstm(att_lstm_input, (state[0][0], state[1][0]))

        att = self.attention(h_att, att_feats, p_att_feats, att_masks)

        lang_lstm_input = torch.cat([att, h_att], 1)
        # lang_lstm_input = torch.cat([att, F.dropout(h_att, self.drop_prob_lm, self.training)], 1) ?????

        h_lang, c_lang = self.lang_lstm(lang_lstm_input, (state[0][1], state[1][1]))

        output = F.dropout(h_lang, self.drop_prob_lm, self.training)
        state = (torch.stack([h_att, h_lang]), torch.stack([c_att, c_lang]))

        return output, state


############################################################################
# Notice:
# StackAtt and DenseAtt are models that I randomly designed.
# They are not related to any paper.
############################################################################

from .FCModel import LSTMCore
class StackAttCore(nn.Module):
    def __init__(self, opt, use_maxout=False):
        super(StackAttCore, self).__init__()
        self.drop_prob_lm = opt.drop_prob_lm

        # self.att0 = Attention(opt)
        self.att1 = Attention(opt)
        self.att2 = Attention(opt)

        opt_input_encoding_size = opt.input_encoding_size
        opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
        self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
        opt.input_encoding_size = opt.rnn_size * 2
        self.lstm1 = LSTMCore(opt)
        self.lstm2 = LSTMCore(opt)
        opt.input_encoding_size = opt_input_encoding_size

        # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
        self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
        h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
        att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
        h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
        att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
        h_2, state_2 = self.lstm2(torch.cat([h_1,att_res_2],1), [state[0][2:3], state[1][2:3]])

        return h_2, [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]

class DenseAttCore(nn.Module):
    def __init__(self, opt, use_maxout=False):
        super(DenseAttCore, self).__init__()
        self.drop_prob_lm = opt.drop_prob_lm

        # self.att0 = Attention(opt)
        self.att1 = Attention(opt)
        self.att2 = Attention(opt)

        opt_input_encoding_size = opt.input_encoding_size
        opt.input_encoding_size = opt.input_encoding_size + opt.rnn_size
        self.lstm0 = LSTMCore(opt) # att_feat + word_embedding
        opt.input_encoding_size = opt.rnn_size * 2
        self.lstm1 = LSTMCore(opt)
        self.lstm2 = LSTMCore(opt)
        opt.input_encoding_size = opt_input_encoding_size

        # self.emb1 = nn.Linear(opt.rnn_size, opt.rnn_size)
        self.emb2 = nn.Linear(opt.rnn_size, opt.rnn_size)

        # fuse h_0 and h_1
        self.fusion1 = nn.Sequential(nn.Linear(opt.rnn_size*2, opt.rnn_size),
                                     nn.ReLU(),
                                     nn.Dropout(opt.drop_prob_lm))
        # fuse h_0, h_1 and h_2
        self.fusion2 = nn.Sequential(nn.Linear(opt.rnn_size*3, opt.rnn_size),
                                     nn.ReLU(),
                                     nn.Dropout(opt.drop_prob_lm))

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        # att_res_0 = self.att0(state[0][-1], att_feats, p_att_feats, att_masks)
        h_0, state_0 = self.lstm0(torch.cat([xt,fc_feats],1), [state[0][0:1], state[1][0:1]])
        att_res_1 = self.att1(h_0, att_feats, p_att_feats, att_masks)
        h_1, state_1 = self.lstm1(torch.cat([h_0,att_res_1],1), [state[0][1:2], state[1][1:2]])
        att_res_2 = self.att2(h_1 + self.emb2(att_res_1), att_feats, p_att_feats, att_masks)
        h_2, state_2 = self.lstm2(torch.cat([self.fusion1(torch.cat([h_0, h_1], 1)),att_res_2],1), [state[0][2:3], state[1][2:3]])

        return self.fusion2(torch.cat([h_0, h_1, h_2], 1)), [torch.cat(_, 0) for _ in zip(state_0, state_1, state_2)]

class Attention(nn.Module):
    def __init__(self, opt):
        super(Attention, self).__init__()
        self.rnn_size = opt.rnn_size
        self.att_hid_size = opt.att_hid_size

        self.h2att = nn.Linear(self.rnn_size, self.att_hid_size)
        self.alpha_net = nn.Linear(self.att_hid_size, 1)

    def forward(self, h, att_feats, p_att_feats, att_masks=None):
        # The p_att_feats here is already projected
        att_size = att_feats.numel() // att_feats.size(0) // att_feats.size(-1)
        att = p_att_feats.view(-1, att_size, self.att_hid_size)
        
        att_h = self.h2att(h)                        # batch * att_hid_size
        att_h = att_h.unsqueeze(1).expand_as(att)            # batch * att_size * att_hid_size
        dot = att + att_h                                   # batch * att_size * att_hid_size
        dot = torch.tanh(dot)                                # batch * att_size * att_hid_size
        dot = dot.view(-1, self.att_hid_size)               # (batch * att_size) * att_hid_size
        dot = self.alpha_net(dot)                           # (batch * att_size) * 1
        dot = dot.view(-1, att_size)                        # batch * att_size
        
        weight = F.softmax(dot, dim=1)                             # batch * att_size
        if att_masks is not None:
            weight = weight * att_masks.view(-1, att_size).to(weight)
            weight = weight / weight.sum(1, keepdim=True) # normalize to 1
        att_feats_ = att_feats.view(-1, att_size, att_feats.size(-1)) # batch * att_size * att_feat_size
        att_res = torch.bmm(weight.unsqueeze(1), att_feats_).squeeze(1) # batch * att_feat_size

        return att_res

class Att2in2Core(nn.Module):
    def __init__(self, opt):
        super(Att2in2Core, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        #self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        #self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_hid_size = opt.att_hid_size
        
        # Build a LSTM
        self.a2c = nn.Linear(self.rnn_size, 2 * self.rnn_size)
        self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
        self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
        self.dropout = nn.Dropout(self.drop_prob_lm)

        self.attention = Attention(opt)

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)

        all_input_sums = self.i2h(xt) + self.h2h(state[0][-1])
        sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
        sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
        in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
        forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
        out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)

        in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size) + \
            self.a2c(att_res)
        in_transform = torch.max(\
            in_transform.narrow(1, 0, self.rnn_size),
            in_transform.narrow(1, self.rnn_size, self.rnn_size))
        next_c = forget_gate * state[1][-1] + in_gate * in_transform
        next_h = out_gate * torch.tanh(next_c)

        output = self.dropout(next_h)
        state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
        return output, state

class Att2inCore(Att2in2Core):
    def __init__(self, opt):
        super(Att2inCore, self).__init__(opt)
        del self.a2c
        self.a2c = nn.Linear(self.att_feat_size, 2 * self.rnn_size)

"""
Note this is my attempt to replicate att2all model in self-critical paper.
However, this is not a correct replication actually. Will fix it.
"""
class Att2all2Core(nn.Module):
    def __init__(self, opt):
        super(Att2all2Core, self).__init__()
        self.input_encoding_size = opt.input_encoding_size
        #self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        #self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.fc_feat_size = opt.fc_feat_size
        self.att_feat_size = opt.att_feat_size
        self.att_hid_size = opt.att_hid_size
        
        # Build a LSTM
        self.a2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
        self.i2h = nn.Linear(self.input_encoding_size, 5 * self.rnn_size)
        self.h2h = nn.Linear(self.rnn_size, 5 * self.rnn_size)
        self.dropout = nn.Dropout(self.drop_prob_lm)

        self.attention = Attention(opt)

    def forward(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks=None):
        att_res = self.attention(state[0][-1], att_feats, p_att_feats, att_masks)

        all_input_sums = self.i2h(xt) + self.h2h(state[0][-1]) + self.a2h(att_res)
        sigmoid_chunk = all_input_sums.narrow(1, 0, 3 * self.rnn_size)
        sigmoid_chunk = torch.sigmoid(sigmoid_chunk)
        in_gate = sigmoid_chunk.narrow(1, 0, self.rnn_size)
        forget_gate = sigmoid_chunk.narrow(1, self.rnn_size, self.rnn_size)
        out_gate = sigmoid_chunk.narrow(1, self.rnn_size * 2, self.rnn_size)

        in_transform = all_input_sums.narrow(1, 3 * self.rnn_size, 2 * self.rnn_size)
        in_transform = torch.max(\
            in_transform.narrow(1, 0, self.rnn_size),
            in_transform.narrow(1, self.rnn_size, self.rnn_size))
        next_c = forget_gate * state[1][-1] + in_gate * in_transform
        next_h = out_gate * torch.tanh(next_c)

        output = self.dropout(next_h)
        state = (next_h.unsqueeze(0), next_c.unsqueeze(0))
        return output, state

class AdaAttModel(AttModel):
    def __init__(self, opt):
        super(AdaAttModel, self).__init__(opt)
        self.core = AdaAttCore(opt)

# AdaAtt with maxout lstm
class AdaAttMOModel(AttModel):
    def __init__(self, opt):
        super(AdaAttMOModel, self).__init__(opt)
        self.core = AdaAttCore(opt, True)

class Att2in2Model(AttModel):
    def __init__(self, opt):
        super(Att2in2Model, self).__init__(opt)
        self.core = Att2in2Core(opt)
        delattr(self, 'fc_embed')
        self.fc_embed = lambda x : x

class Att2all2Model(AttModel):
    def __init__(self, opt):
        super(Att2all2Model, self).__init__(opt)
        self.core = Att2all2Core(opt)
        delattr(self, 'fc_embed')
        self.fc_embed = lambda x : x

class UpDownModel(AttModel):
    def __init__(self, opt):
        super(UpDownModel, self).__init__(opt)
        self.num_layers = 2
        self.core = UpDownCore(opt)

class StackAttModel(AttModel):
    def __init__(self, opt):
        super(StackAttModel, self).__init__(opt)
        self.num_layers = 3
        self.core = StackAttCore(opt)

class DenseAttModel(AttModel):
    def __init__(self, opt):
        super(DenseAttModel, self).__init__(opt)
        self.num_layers = 3
        self.core = DenseAttCore(opt)

class Att2inModel(AttModel):
    def __init__(self, opt):
        super(Att2inModel, self).__init__(opt)
        del self.embed, self.fc_embed, self.att_embed
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self.fc_embed = self.att_embed = lambda x: x
        del self.ctx2att
        self.ctx2att = nn.Linear(self.att_feat_size, self.att_hid_size)
        self.core = Att2inCore(opt)
        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.embed.weight.data.uniform_(-initrange, initrange)
        self.logit.bias.data.fill_(0)
        self.logit.weight.data.uniform_(-initrange, initrange)


class NewFCModel(AttModel):
    def __init__(self, opt):
        super(NewFCModel, self).__init__(opt)
        self.fc_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self._core = LSTMCore(opt)
        delattr(self, 'att_embed')
        self.att_embed = lambda x : x
        delattr(self, 'ctx2att')
        self.ctx2att = lambda x: x
    
    def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
        # Step 0, feed the input image
        # if (self.training and state[0].is_leaf) or \
        #     (not self.training and state[0].sum() == 0):
        #     _, state = self._core(fc_feats, state)
        # three cases
        # normal mle training
        # Sample
        # beam search (diverse beam search)
        # fixed captioning module.
        is_first_step = (state[0]==0).all(2).all(0) # size: B
        if is_first_step.all():
            _, state = self._core(fc_feats, state)
        elif is_first_step.any():
            # This is mostly for diverse beam search I think
            new_state = [torch.zeros_like(_) for _ in state]
            new_state[0][:, ~is_first_step] = state[0][:, ~is_first_step]
            new_state[1][:, ~is_first_step] = state[1][:, ~is_first_step]
            _, state = self._core(fc_feats, state)
            new_state[0][:, is_first_step] = state[0][:, is_first_step]
            new_state[1][:, is_first_step] = state[1][:, is_first_step]
            state = new_state
        # if (state[0]==0).all():
        #     # Let's forget about diverse beam search first
        #     _, state = self._core(fc_feats, state)
        return self._core(xt, state)
    
    def _prepare_feature(self, fc_feats, att_feats, att_masks):
        fc_feats = self.fc_embed(fc_feats)

        return fc_feats, att_feats, att_feats, att_masks


class LMModel(AttModel):
    def __init__(self, opt):
        super(LMModel, self).__init__(opt)
        delattr(self, 'fc_embed')
        self.fc_embed = lambda x: x.new_zeros(x.shape[0], self.input_encoding_size)
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self._core = LSTMCore(opt)
        delattr(self, 'att_embed')
        self.att_embed = lambda x : x
        delattr(self, 'ctx2att')
        self.ctx2att = lambda x: x
    
    def core(self, xt, fc_feats, att_feats, p_att_feats, state, att_masks):
        if (state[0]==0).all():
            # Let's forget about diverse beam search first
            _, state = self._core(fc_feats, state)
        return self._core(xt, state)
    
    def _prepare_feature(self, fc_feats, att_feats, att_masks):
        fc_feats = self.fc_embed(fc_feats)

        return fc_feats, None, None, None