Spaces:
Runtime error
Runtime error
File size: 12,439 Bytes
c80917c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from json import encoder
import random
import string
import time
import os
import sys
from . import misc as utils
# load coco-caption if available
try:
sys.path.append("coco-caption")
from pycocotools.coco import COCO
from pycocoevalcap.eval import COCOEvalCap
except:
print('Warning: coco-caption not available')
bad_endings = ['a','an','the','in','for','at','of','with','before','after','on','upon','near','to','is','are','am']
bad_endings += ['the']
def count_bad(sen):
sen = sen.split(' ')
if sen[-1] in bad_endings:
return 1
else:
return 0
def getCOCO(dataset):
if 'coco' in dataset:
annFile = 'coco-caption/annotations/captions_val2014.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
annFile = 'data/f30k_captions4eval.json'
return COCO(annFile)
def language_eval(dataset, preds, preds_n, eval_kwargs, split):
model_id = eval_kwargs['id']
eval_oracle = eval_kwargs.get('eval_oracle', 0)
# create output dictionary
out = {}
if len(preds_n) > 0:
# vocab size and novel sentences
if 'coco' in dataset:
dataset_file = 'data/dataset_coco.json'
elif 'flickr30k' in dataset or 'f30k' in dataset:
dataset_file = 'data/dataset_flickr30k.json'
training_sentences = set([' '.join(__['tokens']) for _ in json.load(open(dataset_file))['images'] if not _['split'] in ['val', 'test'] for __ in _['sentences']])
generated_sentences = set([_['caption'] for _ in preds_n])
novels = generated_sentences - training_sentences
out['novel_sentences'] = float(len(novels)) / len(preds_n)
tmp = [_.split() for _ in generated_sentences]
words = []
for _ in tmp:
words += _
out['vocab_size'] = len(set(words))
# encoder.FLOAT_REPR = lambda o: format(o, '.3f')
cache_path = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '.json')
coco = getCOCO(dataset)
valids = coco.getImgIds()
# filter results to only those in MSCOCO validation set
preds_filt = [p for p in preds if p['image_id'] in valids]
mean_perplexity = sum([_['perplexity'] for _ in preds_filt]) / len(preds_filt)
mean_entropy = sum([_['entropy'] for _ in preds_filt]) / len(preds_filt)
print('using %d/%d predictions' % (len(preds_filt), len(preds)))
json.dump(preds_filt, open(cache_path, 'w')) # serialize to temporary json file. Sigh, COCO API...
cocoRes = coco.loadRes(cache_path)
cocoEval = COCOEvalCap(coco, cocoRes)
cocoEval.params['image_id'] = cocoRes.getImgIds()
cocoEval.evaluate()
for metric, score in cocoEval.eval.items():
out[metric] = score
# Add mean perplexity
out['perplexity'] = mean_perplexity
out['entropy'] = mean_entropy
imgToEval = cocoEval.imgToEval
for k in list(imgToEval.values())[0]['SPICE'].keys():
if k != 'All':
out['SPICE_'+k] = np.array([v['SPICE'][k]['f'] for v in imgToEval.values()])
out['SPICE_'+k] = (out['SPICE_'+k][out['SPICE_'+k]==out['SPICE_'+k]]).mean()
for p in preds_filt:
image_id, caption = p['image_id'], p['caption']
imgToEval[image_id]['caption'] = caption
if len(preds_n) > 0:
from . import eval_multi
cache_path_n = os.path.join('eval_results/', '.cache_'+ model_id + '_' + split + '_n.json')
allspice = eval_multi.eval_allspice(dataset, preds_n, model_id, split)
out.update(allspice['overall'])
div_stats = eval_multi.eval_div_stats(dataset, preds_n, model_id, split)
out.update(div_stats['overall'])
if eval_oracle:
oracle = eval_multi.eval_oracle(dataset, preds_n, model_id, split)
out.update(oracle['overall'])
else:
oracle = None
self_cider = eval_multi.eval_self_cider(dataset, preds_n, model_id, split)
out.update(self_cider['overall'])
with open(cache_path_n, 'w') as outfile:
json.dump({'allspice': allspice, 'div_stats': div_stats, 'oracle': oracle, 'self_cider': self_cider}, outfile)
out['bad_count_rate'] = sum([count_bad(_['caption']) for _ in preds_filt]) / float(len(preds_filt))
outfile_path = os.path.join('eval_results/', model_id + '_' + split + '.json')
with open(outfile_path, 'w') as outfile:
json.dump({'overall': out, 'imgToEval': imgToEval}, outfile)
return out
def eval_split(model, crit, loader, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 0)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
split = eval_kwargs.get('split', 'val')
lang_eval = eval_kwargs.get('language_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings) # Use this nasty way to make other code clean since it's a global configuration
device = eval_kwargs.get('device', 'cuda')
# Make sure in the evaluation mode
model.eval()
loader.reset_iterator(split)
n = 0
loss = 0
loss_sum = 0
loss_evals = 1e-8
predictions = []
n_predictions = [] # when sample_n > 1
while True:
data = loader.get_batch(split)
n = n + len(data['infos'])
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks'], data['att_masks']]
tmp = [_.to(device) if _ is not None else _ for _ in tmp]
fc_feats, att_feats, labels, masks, att_masks = tmp
if labels is not None and verbose_loss:
# forward the model to get loss
with torch.no_grad():
loss = crit(model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:]).item()
loss_sum = loss_sum + loss
loss_evals = loss_evals + 1
# forward the model to also get generated samples for each image
with torch.no_grad():
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
entropy = - (F.softmax(seq_logprobs, dim=2) * seq_logprobs).sum(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1)
perplexity = - seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(2).sum(1) / ((seq>0).to(seq_logprobs).sum(1)+1)
# Print beam search
if beam_size > 1 and verbose_beam:
for i in range(fc_feats.shape[0]):
print('\n'.join([utils.decode_sequence(model.vocab, _['seq'].unsqueeze(0))[0] for _ in model.done_beams[i]]))
print('--' * 10)
sents = utils.decode_sequence(model.vocab, seq)
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent, 'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()}
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
predictions.append(entry)
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + '" vis/imgs/img' + str(len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
if verbose:
print('image %s: %s' %(entry['image_id'], entry['caption']))
if sample_n > 1:
eval_split_n(model, n_predictions, [fc_feats, att_feats, att_masks, data], eval_kwargs)
# ix0 = data['bounds']['it_pos_now']
ix1 = data['bounds']['it_max']
if num_images != -1:
ix1 = min(ix1, num_images)
else:
num_images = ix1
for i in range(n - ix1):
predictions.pop()
if verbose:
print('evaluating validation preformance... %d/%d (%f)' %(n, ix1, loss))
if num_images >= 0 and n >= num_images:
break
lang_stats = None
if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]:
n_predictions = sorted(n_predictions, key=lambda x: x['perplexity'])
if not os.path.isdir('eval_results'):
os.mkdir('eval_results')
torch.save((predictions, n_predictions), os.path.join('eval_results/', '.saved_pred_'+ eval_kwargs['id'] + '_' + split + '.pth'))
if lang_eval == 1:
lang_stats = language_eval(dataset, predictions, n_predictions, eval_kwargs, split)
# Switch back to training mode
model.train()
return loss_sum/loss_evals, predictions, lang_stats
# Only run when sample_n > 0
def eval_split_n(model, n_predictions, input_data, eval_kwargs={}):
verbose = eval_kwargs.get('verbose', True)
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
sample_n_method = eval_kwargs.get('sample_n_method', 'sample')
fc_feats, att_feats, att_masks, data = input_data
tmp_eval_kwargs = eval_kwargs.copy()
if sample_n_method == 'bs':
# case 1 sample_n == beam size
tmp_eval_kwargs.update({'sample_n': 1, 'beam_size': sample_n, 'group_size': 1}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(fc_feats.shape[0]):
_sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(sample_n)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
# case 2 sample / gumbel / topk sampling/ nucleus sampling
elif sample_n_method == 'sample' or \
sample_n_method == 'gumbel' or \
sample_n_method.startswith('top'):
tmp_eval_kwargs.update({'sample_n': sample_n, 'sample_method': sample_n_method, 'beam_size': 1}) # randomness from sample
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(model.vocab, _seq)
_perplexity = - _sampleLogprobs.gather(2, _seq.unsqueeze(2)).squeeze(2).sum(1) / ((_seq>0).to(_sampleLogprobs).sum(1)+1)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent, 'perplexity': _perplexity[k].item()}
n_predictions.append(entry)
elif sample_n_method == 'dbs':
# Use diverse beam search
tmp_eval_kwargs.update({'beam_size': sample_n * beam_size, 'group_size': sample_n}) # randomness from softmax
with torch.no_grad():
model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
for k in range(loader.batch_size):
_sents = utils.decode_sequence(model.vocab, torch.stack([model.done_beams[k][_]['seq'] for _ in range(0, sample_n*beam_size, beam_size)]))
for sent in _sents:
entry = {'image_id': data['infos'][k]['id'], 'caption': sent}
n_predictions.append(entry)
else:
tmp_eval_kwargs.update({'sample_method': sample_n_method[1:], 'group_size': sample_n, 'beam_size':1}) # randomness from softmax
with torch.no_grad():
_seq, _sampleLogprobs = model(fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
_sents = utils.decode_sequence(model.vocab, _seq)
for k, sent in enumerate(_sents):
entry = {'image_id': data['infos'][k // sample_n]['id'], 'caption': sent}
n_predictions.append(entry)
if verbose:
for entry in sorted(n_predictions[-fc_feats.shape[0] * sample_n:], key=lambda x: x['image_id']):
print('image %s: %s' %(entry['image_id'], entry['caption'])) |