from __future__ import annotations
import pandas as pd
class PaperList:
def __init__(self):
self.table = pd.read_csv("papers.csv")
self._preprcess_table()
self.table_header = """
Paper |
Authors |
pdf |
category |
arXiv |
GitHub |
HF Spaces |
HF Models |
HF Datasets |
"""
def _preprcess_table(self) -> None:
self.table["title_lowercase"] = self.table.title.str.lower()
rows = []
for row in self.table.itertuples():
paper = f'{row.title}' if isinstance(row.url, str) else row.title
pdf = f'pdf' if isinstance(row.pdf, str) else ""
arxiv = f'arXiv' if isinstance(row.arxiv, str) else ""
github = f'GitHub' if isinstance(row.github, str) else ""
hf_space = f'Space' if isinstance(row.hf_space, str) else ""
hf_model = f'Model' if isinstance(row.hf_model, str) else ""
hf_dataset = (
f'Dataset' if isinstance(row.hf_dataset, str) else ""
)
row = f"""
{paper} |
{row.authors} |
{pdf} |
{row.category} |
{arxiv} |
{github} |
{hf_space} |
{hf_model} |
{hf_dataset} |
"""
rows.append(row)
self.table["html_table_content"] = rows
def render(
self, search_query: str, case_sensitive: bool, filter_names: list[str], paper_categories: list[str]
) -> tuple[int, str]:
df = self.table
if search_query:
if case_sensitive:
df = df[df.title.str.contains(search_query)]
else:
df = df[df.title_lowercase.str.contains(search_query.lower())]
has_arxiv = "arXiv" in filter_names
has_github = "GitHub" in filter_names
has_hf_space = "HF Space" in filter_names
has_hf_model = "HF Model" in filter_names
has_hf_dataset = "HF Dataset" in filter_names
df = self.filter_table(df, has_arxiv, has_github, has_hf_space, has_hf_model, has_hf_dataset, paper_categories)
return len(df), self.to_html(df, self.table_header)
@staticmethod
def filter_table(
df: pd.DataFrame,
has_arxiv: bool,
has_github: bool,
has_hf_space: bool,
has_hf_model: bool,
has_hf_dataset: bool,
paper_categories: list[str],
) -> pd.DataFrame:
if has_arxiv:
df = df[~df.arxiv.isna()]
if has_github:
df = df[~df.github.isna()]
if has_hf_space:
df = df[~df.hf_space.isna()]
if has_hf_model:
df = df[~df.hf_model.isna()]
if has_hf_dataset:
df = df[~df.hf_dataset.isna()]
df = df[df.category.isin(set(paper_categories))]
return df
@staticmethod
def to_html(df: pd.DataFrame, table_header: str) -> str:
table_data = "".join(df.html_table_content)
html = f"""
{table_header}
{table_data}
"""
return html