Spaces:
Runtime error
Runtime error
File size: 16,543 Bytes
d1b91e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import filecmp
import os
import traceback
import numpy as np
import pandas as pd
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim
import torch.utils.data
import yaml
from tqdm import tqdm
import utils
from tasks.tts.dataset_utils import BaseSpeechDataset
from tasks.tts.tts_utils import parse_mel_losses, parse_dataset_configs, load_data_preprocessor, load_data_binarizer
from tasks.tts.vocoder_infer.base_vocoder import BaseVocoder, get_vocoder_cls
from utils.audio.align import mel2token_to_dur
from utils.audio.io import save_wav
from utils.audio.pitch_extractors import extract_pitch_simple
from utils.commons.base_task import BaseTask
from utils.commons.ckpt_utils import load_ckpt
from utils.commons.dataset_utils import data_loader, BaseConcatDataset
from utils.commons.hparams import hparams
from utils.commons.multiprocess_utils import MultiprocessManager
from utils.commons.tensor_utils import tensors_to_scalars
from utils.metrics.ssim import ssim
from utils.nn.model_utils import print_arch
from utils.nn.schedulers import RSQRTSchedule, NoneSchedule, WarmupSchedule
from utils.nn.seq_utils import weights_nonzero_speech
from utils.plot.plot import spec_to_figure
from utils.text.text_encoder import build_token_encoder
import matplotlib.pyplot as plt
class SpeechBaseTask(BaseTask):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.dataset_cls = BaseSpeechDataset
self.vocoder = None
data_dir = hparams['binary_data_dir']
if not hparams['use_word_input']:
self.token_encoder = build_token_encoder(f'{data_dir}/phone_set.json')
else:
self.token_encoder = build_token_encoder(f'{data_dir}/word_set.json')
self.padding_idx = self.token_encoder.pad()
self.eos_idx = self.token_encoder.eos()
self.seg_idx = self.token_encoder.seg()
self.saving_result_pool = None
self.saving_results_futures = None
self.mel_losses = parse_mel_losses()
self.max_tokens, self.max_sentences, \
self.max_valid_tokens, self.max_valid_sentences = parse_dataset_configs()
##########################
# datasets
##########################
@data_loader
def train_dataloader(self):
if hparams['train_sets'] != '':
train_sets = hparams['train_sets'].split("|")
# check if all train_sets have the same spk map and dictionary
binary_data_dir = hparams['binary_data_dir']
file_to_cmp = ['phone_set.json']
if os.path.exists(f'{binary_data_dir}/word_set.json'):
file_to_cmp.append('word_set.json')
if hparams['use_spk_id']:
file_to_cmp.append('spk_map.json')
for f in file_to_cmp:
for ds_name in train_sets:
base_file = os.path.join(binary_data_dir, f)
ds_file = os.path.join(ds_name, f)
assert filecmp.cmp(base_file, ds_file), \
f'{f} in {ds_name} is not same with that in {binary_data_dir}.'
train_dataset = BaseConcatDataset([
self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets])
else:
train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True)
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences,
endless=hparams['endless_ds'])
@data_loader
def val_dataloader(self):
valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False)
return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences,
batch_by_size=False)
@data_loader
def test_dataloader(self):
test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False)
self.test_dl = self.build_dataloader(
test_dataset, False, self.max_valid_tokens, self.max_valid_sentences, batch_by_size=False)
return self.test_dl
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None,
required_batch_size_multiple=-1, endless=False, batch_by_size=True):
devices_cnt = torch.cuda.device_count()
if devices_cnt == 0:
devices_cnt = 1
if required_batch_size_multiple == -1:
required_batch_size_multiple = devices_cnt
def shuffle_batches(batches):
np.random.shuffle(batches)
return batches
if max_tokens is not None:
max_tokens *= devices_cnt
if max_sentences is not None:
max_sentences *= devices_cnt
indices = dataset.ordered_indices()
if batch_by_size:
batch_sampler = utils.commons.dataset_utils.batch_by_size(
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
)
else:
batch_sampler = []
for i in range(0, len(indices), max_sentences):
batch_sampler.append(indices[i:i + max_sentences])
if shuffle:
batches = shuffle_batches(list(batch_sampler))
if endless:
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))]
else:
batches = batch_sampler
if endless:
batches = [b for _ in range(1000) for b in batches]
num_workers = dataset.num_workers
if self.trainer.use_ddp:
num_replicas = dist.get_world_size()
rank = dist.get_rank()
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0]
return torch.utils.data.DataLoader(dataset,
collate_fn=dataset.collater,
batch_sampler=batches,
num_workers=num_workers,
pin_memory=False)
##########################
# scheduler and optimizer
##########################
def build_model(self):
self.build_tts_model()
if hparams['load_ckpt'] != '':
load_ckpt(self.model, hparams['load_ckpt'])
print_arch(self.model)
return self.model
def build_tts_model(self):
raise NotImplementedError
def build_scheduler(self, optimizer):
if hparams['scheduler'] == 'rsqrt':
return RSQRTSchedule(optimizer, hparams['lr'], hparams['warmup_updates'], hparams['hidden_size'])
elif hparams['scheduler'] == 'warmup':
return WarmupSchedule(optimizer, hparams['lr'], hparams['warmup_updates'])
elif hparams['scheduler'] == 'step_lr':
return torch.optim.lr_scheduler.StepLR(
optimizer=optimizer, step_size=500, gamma=0.998)
else:
return NoneSchedule(optimizer, hparams['lr'])
def build_optimizer(self, model):
self.optimizer = optimizer = torch.optim.AdamW(
model.parameters(),
lr=hparams['lr'],
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']),
weight_decay=hparams['weight_decay'])
return optimizer
##########################
# training and validation
##########################
def _training_step(self, sample, batch_idx, _):
loss_output, _ = self.run_model(sample)
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad])
loss_output['batch_size'] = sample['txt_tokens'].size()[0]
return total_loss, loss_output
def run_model(self, sample, infer=False):
"""
:param sample: a batch of data
:param infer: bool, run in infer mode
:return:
if not infer:
return losses, model_out
if infer:
return model_out
"""
raise NotImplementedError
def validation_start(self):
self.vocoder = get_vocoder_cls(hparams['vocoder'])()
def validation_step(self, sample, batch_idx):
outputs = {}
outputs['losses'] = {}
outputs['losses'], model_out = self.run_model(sample)
outputs['total_loss'] = sum(outputs['losses'].values())
outputs['nsamples'] = sample['nsamples']
outputs = tensors_to_scalars(outputs)
if self.global_step % hparams['valid_infer_interval'] == 0 \
and batch_idx < hparams['num_valid_plots']:
self.save_valid_result(sample, batch_idx, model_out)
return outputs
def validation_end(self, outputs):
self.vocoder = None
return super(SpeechBaseTask, self).validation_end(outputs)
def save_valid_result(self, sample, batch_idx, model_out):
raise NotImplementedError
##########################
# losses
##########################
def add_mel_loss(self, mel_out, target, losses, postfix=''):
for loss_name, lambd in self.mel_losses.items():
losses[f'{loss_name}{postfix}'] = getattr(self, f'{loss_name}_loss')(mel_out, target) * lambd
def l1_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
l1_loss = F.l1_loss(decoder_output, target, reduction='none')
weights = weights_nonzero_speech(target)
l1_loss = (l1_loss * weights).sum() / weights.sum()
return l1_loss
def mse_loss(self, decoder_output, target):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
mse_loss = F.mse_loss(decoder_output, target, reduction='none')
weights = weights_nonzero_speech(target)
mse_loss = (mse_loss * weights).sum() / weights.sum()
return mse_loss
def ssim_loss(self, decoder_output, target, bias=6.0):
# decoder_output : B x T x n_mel
# target : B x T x n_mel
assert decoder_output.shape == target.shape
weights = weights_nonzero_speech(target)
decoder_output = decoder_output[:, None] + bias
target = target[:, None] + bias
ssim_loss = 1 - ssim(decoder_output, target, size_average=False)
ssim_loss = (ssim_loss * weights).sum() / weights.sum()
return ssim_loss
def plot_mel(self, batch_idx, spec_out, spec_gt=None, name=None, title='', f0s=None, dur_info=None):
vmin = hparams['mel_vmin']
vmax = hparams['mel_vmax']
if len(spec_out.shape) == 3:
spec_out = spec_out[0]
if isinstance(spec_out, torch.Tensor):
spec_out = spec_out.cpu().numpy()
if spec_gt is not None:
if len(spec_gt.shape) == 3:
spec_gt = spec_gt[0]
if isinstance(spec_gt, torch.Tensor):
spec_gt = spec_gt.cpu().numpy()
max_len = max(len(spec_gt), len(spec_out))
if max_len - len(spec_gt) > 0:
spec_gt = np.pad(spec_gt, [[0, max_len - len(spec_gt)], [0, 0]], mode='constant',
constant_values=vmin)
if max_len - len(spec_out) > 0:
spec_out = np.pad(spec_out, [[0, max_len - len(spec_out)], [0, 0]], mode='constant',
constant_values=vmin)
spec_out = np.concatenate([spec_out, spec_gt], -1)
name = f'mel_val_{batch_idx}' if name is None else name
self.logger.add_figure(name, spec_to_figure(
spec_out, vmin, vmax, title=title, f0s=f0s, dur_info=dur_info), self.global_step)
##########################
# testing
##########################
def test_start(self):
self.saving_result_pool = MultiprocessManager(int(os.getenv('N_PROC', os.cpu_count())))
self.saving_results_futures = []
self.gen_dir = os.path.join(
hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}')
self.vocoder: BaseVocoder = get_vocoder_cls(hparams['vocoder'])()
os.makedirs(self.gen_dir, exist_ok=True)
os.makedirs(f'{self.gen_dir}/wavs', exist_ok=True)
os.makedirs(f'{self.gen_dir}/plot', exist_ok=True)
if hparams.get('save_mel_npy', False):
os.makedirs(f'{self.gen_dir}/mel_npy', exist_ok=True)
def test_step(self, sample, batch_idx):
"""
:param sample:
:param batch_idx:
:return:
"""
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
outputs = self.run_model(sample, infer=True)
text = sample['text'][0]
item_name = sample['item_name'][0]
tokens = sample['txt_tokens'][0].cpu().numpy()
mel_gt = sample['mels'][0].cpu().numpy()
mel_pred = outputs['mel_out'][0].cpu().numpy()
str_phs = self.token_encoder.decode(tokens, strip_padding=True)
base_fn = f'[{self.results_id:06d}][{item_name.replace("%", "_")}][%s]'
if text is not None:
base_fn += text.replace(":", "$3A")[:80]
base_fn = base_fn.replace(' ', '_')
gen_dir = self.gen_dir
wav_pred = self.vocoder.spec2wav(mel_pred)
self.saving_result_pool.add_job(self.save_result, args=[
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs])
if hparams['save_gt']:
wav_gt = self.vocoder.spec2wav(mel_gt)
self.saving_result_pool.add_job(self.save_result, args=[
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs])
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
return {
'item_name': item_name,
'text': text,
'ph_tokens': self.token_encoder.decode(tokens.tolist()),
'wav_fn_pred': base_fn % 'P',
'wav_fn_gt': base_fn % 'G',
}
@staticmethod
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None):
save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'],
norm=hparams['out_wav_norm'])
fig = plt.figure(figsize=(14, 10))
spec_vmin = hparams['mel_vmin']
spec_vmax = hparams['mel_vmax']
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax)
fig.colorbar(heatmap)
try:
f0 = extract_pitch_simple(wav_out)
f0 = f0 / 10 * (f0 > 0)
plt.plot(f0, c='white', linewidth=1, alpha=0.6)
if mel2ph is not None and str_phs is not None:
decoded_txt = str_phs.split(" ")
dur = mel2token_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy()
dur = [0] + list(np.cumsum(dur))
for i in range(len(dur) - 1):
shift = (i % 20) + 1
plt.text(dur[i], shift, decoded_txt[i])
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black')
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black',
alpha=1, linewidth=1)
plt.tight_layout()
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png')
plt.close(fig)
if hparams.get('save_mel_npy', False):
np.save(f'{gen_dir}/mel_npy/{base_fn}', mel)
if alignment is not None:
fig, ax = plt.subplots(figsize=(12, 16))
im = ax.imshow(alignment, aspect='auto', origin='lower',
interpolation='none')
decoded_txt = str_phs.split(" ")
ax.set_yticks(np.arange(len(decoded_txt)))
ax.set_yticklabels(list(decoded_txt), fontsize=6)
fig.colorbar(im, ax=ax)
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png')
plt.close(fig)
except Exception:
traceback.print_exc()
return None
def test_end(self, outputs):
pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv')
for _1, _2 in tqdm(self.saving_result_pool.get_results(), total=len(self.saving_result_pool)):
pass
return {}
|