File size: 8,099 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import logging
import os
import random
import subprocess
import sys
from datetime import datetime
import numpy as np
import torch.utils.data
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from utils.commons.dataset_utils import data_loader
from utils.commons.hparams import hparams
from utils.commons.meters import AvgrageMeter
from utils.commons.tensor_utils import tensors_to_scalars
from utils.commons.trainer import Trainer

torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system'))

log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
                    format=log_format, datefmt='%m/%d %I:%M:%S %p')


class BaseTask(nn.Module):
    def __init__(self, *args, **kwargs):
        super(BaseTask, self).__init__()
        self.current_epoch = 0
        self.global_step = 0
        self.trainer = None
        self.use_ddp = False
        self.gradient_clip_norm = hparams['clip_grad_norm']
        self.gradient_clip_val = hparams.get('clip_grad_value', 0)
        self.model = None
        self.training_losses_meter = None
        self.logger: SummaryWriter = None

    ######################
    # build model, dataloaders, optimizer, scheduler and tensorboard
    ######################
    def build_model(self):
        raise NotImplementedError

    @data_loader
    def train_dataloader(self):
        raise NotImplementedError

    @data_loader
    def test_dataloader(self):
        raise NotImplementedError

    @data_loader
    def val_dataloader(self):
        raise NotImplementedError

    def build_scheduler(self, optimizer):
        return None

    def build_optimizer(self, model):
        raise NotImplementedError

    def configure_optimizers(self):
        optm = self.build_optimizer(self.model)
        self.scheduler = self.build_scheduler(optm)
        if isinstance(optm, (list, tuple)):
            return optm
        return [optm]

    def build_tensorboard(self, save_dir, name, **kwargs):
        log_dir = os.path.join(save_dir, name)
        os.makedirs(log_dir, exist_ok=True)
        self.logger = SummaryWriter(log_dir=log_dir, **kwargs)

    ######################
    # training
    ######################
    def on_train_start(self):
        pass

    def on_train_end(self):
        pass

    def on_epoch_start(self):
        self.training_losses_meter = {'total_loss': AvgrageMeter()}

    def on_epoch_end(self):
        loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()}
        print(f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}")

    def _training_step(self, sample, batch_idx, optimizer_idx):
        """

        :param sample:
        :param batch_idx:
        :return: total loss: torch.Tensor, loss_log: dict
        """
        raise NotImplementedError

    def training_step(self, sample, batch_idx, optimizer_idx=-1):
        """

        :param sample:
        :param batch_idx:
        :param optimizer_idx:
        :return: {'loss': torch.Tensor, 'progress_bar': dict, 'tb_log': dict}
        """
        loss_ret = self._training_step(sample, batch_idx, optimizer_idx)
        if loss_ret is None:
            return {'loss': None}
        total_loss, log_outputs = loss_ret
        log_outputs = tensors_to_scalars(log_outputs)
        for k, v in log_outputs.items():
            if k not in self.training_losses_meter:
                self.training_losses_meter[k] = AvgrageMeter()
            if not np.isnan(v):
                self.training_losses_meter[k].update(v)
        self.training_losses_meter['total_loss'].update(total_loss.item())

        if optimizer_idx >= 0:
            log_outputs[f'lr_{optimizer_idx}'] = self.trainer.optimizers[optimizer_idx].param_groups[0]['lr']

        progress_bar_log = log_outputs
        tb_log = {f'tr/{k}': v for k, v in log_outputs.items()}
        return {
            'loss': total_loss,
            'progress_bar': progress_bar_log,
            'tb_log': tb_log
        }

    def on_before_optimization(self, opt_idx):
        if self.gradient_clip_norm > 0:
            torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_norm)
        if self.gradient_clip_val > 0:
            torch.nn.utils.clip_grad_value_(self.parameters(), self.gradient_clip_val)

    def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx):
        if self.scheduler is not None:
            self.scheduler.step(self.global_step // hparams['accumulate_grad_batches'])

    ######################
    # validation
    ######################
    def validation_start(self):
        pass

    def validation_step(self, sample, batch_idx):
        """

        :param sample:
        :param batch_idx:
        :return: output: {"losses": {...}, "total_loss": float, ...} or (total loss: torch.Tensor, loss_log: dict)
        """
        raise NotImplementedError

    def validation_end(self, outputs):
        """

        :param outputs:
        :return: loss_output: dict
        """
        all_losses_meter = {'total_loss': AvgrageMeter()}
        for output in outputs:
            if len(output) == 0 or output is None:
                continue
            if isinstance(output, dict):
                assert 'losses' in output, 'Key "losses" should exist in validation output.'
                n = output.pop('nsamples', 1)
                losses = tensors_to_scalars(output['losses'])
                total_loss = output.get('total_loss', sum(losses.values()))
            else:
                assert len(output) == 2, 'Validation output should only consist of two elements: (total_loss, losses)'
                n = 1
                total_loss, losses = output
                losses = tensors_to_scalars(losses)
            if isinstance(total_loss, torch.Tensor):
                total_loss = total_loss.item()
            for k, v in losses.items():
                if k not in all_losses_meter:
                    all_losses_meter[k] = AvgrageMeter()
                all_losses_meter[k].update(v, n)
            all_losses_meter['total_loss'].update(total_loss, n)
        loss_output = {k: round(v.avg, 4) for k, v in all_losses_meter.items()}
        print(f"| Validation results@{self.global_step}: {loss_output}")
        return {
            'tb_log': {f'val/{k}': v for k, v in loss_output.items()},
            'val_loss': loss_output['total_loss']
        }

    ######################
    # testing
    ######################
    def test_start(self):
        pass

    def test_step(self, sample, batch_idx):
        return self.validation_step(sample, batch_idx)

    def test_end(self, outputs):
        return self.validation_end(outputs)

    ######################
    # start training/testing
    ######################
    @classmethod
    def start(cls):
        os.environ['MASTER_PORT'] = str(random.randint(15000, 30000))
        random.seed(hparams['seed'])
        np.random.seed(hparams['seed'])
        work_dir = hparams['work_dir']
        trainer = Trainer(
            work_dir=work_dir,
            val_check_interval=hparams['val_check_interval'],
            tb_log_interval=hparams['tb_log_interval'],
            max_updates=hparams['max_updates'],
            num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams['validate'] else 10000,
            accumulate_grad_batches=hparams['accumulate_grad_batches'],
            print_nan_grads=hparams['print_nan_grads'],
            resume_from_checkpoint=hparams.get('resume_from_checkpoint', 0),
            amp=hparams['amp'],
            monitor_key=hparams['valid_monitor_key'],
            monitor_mode=hparams['valid_monitor_mode'],
            num_ckpt_keep=hparams['num_ckpt_keep'],
            save_best=hparams['save_best'],
            seed=hparams['seed'],
            debug=hparams['debug']
        )
        if not hparams['infer']:  # train
            trainer.fit(cls)
        else:
            trainer.test(cls)

    def on_keyboard_interrupt(self):
        pass