File size: 9,351 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import json
import os
import random
import traceback
from functools import partial

import numpy as np
from resemblyzer import VoiceEncoder
from tqdm import tqdm

import utils.commons.single_thread_env  # NOQA
from utils.audio import librosa_wav2spec
from utils.audio.align import get_mel2ph, mel2token_to_dur
from utils.audio.cwt import get_lf0_cwt, get_cont_lf0
from utils.audio.pitch.utils import f0_to_coarse
from utils.audio.pitch_extractors import extract_pitch_simple
from utils.commons.hparams import hparams
from utils.commons.indexed_datasets import IndexedDatasetBuilder
from utils.commons.multiprocess_utils import multiprocess_run_tqdm
from utils.os_utils import remove_file, copy_file

np.seterr(divide='ignore', invalid='ignore')


class BinarizationError(Exception):
    pass


class BaseBinarizer:
    def __init__(self, processed_data_dir=None):
        if processed_data_dir is None:
            processed_data_dir = hparams['processed_data_dir']
        self.processed_data_dir = processed_data_dir
        self.binarization_args = hparams['binarization_args']
        self.items = {}
        self.item_names = []

    def load_meta_data(self):
        processed_data_dir = self.processed_data_dir
        items_list = json.load(open(f"{processed_data_dir}/metadata.json"))
        for r in tqdm(items_list, desc='Loading meta data.'):
            item_name = r['item_name']
            self.items[item_name] = r
            self.item_names.append(item_name)
        if self.binarization_args['shuffle']:
            random.seed(1234)
            random.shuffle(self.item_names)

    @property
    def train_item_names(self):
        range_ = self._convert_range(self.binarization_args['train_range'])
        return self.item_names[range_[0]:range_[1]]

    @property
    def valid_item_names(self):
        range_ = self._convert_range(self.binarization_args['valid_range'])
        return self.item_names[range_[0]:range_[1]]

    @property
    def test_item_names(self):
        range_ = self._convert_range(self.binarization_args['test_range'])
        return self.item_names[range_[0]:range_[1]]

    def _convert_range(self, range_):
        if range_[1] == -1:
            range_[1] = len(self.item_names)
        return range_

    def meta_data(self, prefix):
        if prefix == 'valid':
            item_names = self.valid_item_names
        elif prefix == 'test':
            item_names = self.test_item_names
        else:
            item_names = self.train_item_names
        for item_name in item_names:
            yield self.items[item_name]

    def process(self):
        self.load_meta_data()
        os.makedirs(hparams['binary_data_dir'], exist_ok=True)
        for fn in ['phone_set.json', 'word_set.json', 'spk_map.json']:
            remove_file(f"{hparams['binary_data_dir']}/{fn}")
            copy_file(f"{hparams['processed_data_dir']}/{fn}", f"{hparams['binary_data_dir']}/{fn}")
        self.process_data('valid')
        self.process_data('test')
        self.process_data('train')

    def process_data(self, prefix):
        data_dir = hparams['binary_data_dir']
        builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
        meta_data = list(self.meta_data(prefix))
        process_item = partial(self.process_item, binarization_args=self.binarization_args)
        ph_lengths = []
        mel_lengths = []
        total_sec = 0
        items = []
        args = [{'item': item} for item in meta_data]
        for item_id, item in multiprocess_run_tqdm(process_item, args, desc='Processing data'):
            if item is not None:
                items.append(item)
        if self.binarization_args['with_spk_embed']:
            args = [{'wav': item['wav']} for item in items]
            for item_id, spk_embed in multiprocess_run_tqdm(
                    self.get_spk_embed, args,
                    init_ctx_func=lambda wid: {'voice_encoder': VoiceEncoder().cuda()}, num_workers=4,
                    desc='Extracting spk embed'):
                items[item_id]['spk_embed'] = spk_embed

        for item in items:
            if not self.binarization_args['with_wav'] and 'wav' in item:
                del item['wav']
            builder.add_item(item)
            mel_lengths.append(item['len'])
            assert item['len'] > 0, (item['item_name'], item['txt'], item['mel2ph'])
            if 'ph_len' in item:
                ph_lengths.append(item['ph_len'])
            total_sec += item['sec']
        builder.finalize()
        np.save(f'{data_dir}/{prefix}_lengths.npy', mel_lengths)
        if len(ph_lengths) > 0:
            np.save(f'{data_dir}/{prefix}_ph_lengths.npy', ph_lengths)
        print(f"| {prefix} total duration: {total_sec:.3f}s")

    @classmethod
    def process_item(cls, item, binarization_args):
        item['ph_len'] = len(item['ph_token'])
        item_name = item['item_name']
        wav_fn = item['wav_fn']
        wav, mel = cls.process_audio(wav_fn, item, binarization_args)
        try:
            n_bos_frames, n_eos_frames = 0, 0
            if binarization_args['with_align']:
                tg_fn = f"{hparams['processed_data_dir']}/mfa_outputs/{item_name}.TextGrid"
                item['tg_fn'] = tg_fn
                cls.process_align(tg_fn, item)
                if binarization_args['trim_eos_bos']:
                    n_bos_frames = item['dur'][0]
                    n_eos_frames = item['dur'][-1]
                    T = len(mel)
                    item['mel'] = mel[n_bos_frames:T - n_eos_frames]
                    item['mel2ph'] = item['mel2ph'][n_bos_frames:T - n_eos_frames]
                    item['mel2word'] = item['mel2word'][n_bos_frames:T - n_eos_frames]
                    item['dur'] = item['dur'][1:-1]
                    item['dur_word'] = item['dur_word'][1:-1]
                    item['len'] = item['mel'].shape[0]
                    item['wav'] = wav[n_bos_frames * hparams['hop_size']:len(wav) - n_eos_frames * hparams['hop_size']]
            if binarization_args['with_f0']:
                cls.process_pitch(item, n_bos_frames, n_eos_frames)
        except BinarizationError as e:
            print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        except Exception as e:
            traceback.print_exc()
            print(f"| Skip item. item_name: {item_name}, wav_fn: {wav_fn}")
            return None
        return item

    @classmethod
    def process_audio(cls, wav_fn, res, binarization_args):
        wav2spec_dict = librosa_wav2spec(
            wav_fn,
            fft_size=hparams['fft_size'],
            hop_size=hparams['hop_size'],
            win_length=hparams['win_size'],
            num_mels=hparams['audio_num_mel_bins'],
            fmin=hparams['fmin'],
            fmax=hparams['fmax'],
            sample_rate=hparams['audio_sample_rate'],
            loud_norm=hparams['loud_norm'])
        mel = wav2spec_dict['mel']
        wav = wav2spec_dict['wav'].astype(np.float16)
        if binarization_args['with_linear']:
            res['linear'] = wav2spec_dict['linear']
        res.update({'mel': mel, 'wav': wav, 'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0]})
        return wav, mel

    @staticmethod
    def process_align(tg_fn, item):
        ph = item['ph']
        mel = item['mel']
        ph_token = item['ph_token']
        if tg_fn is not None and os.path.exists(tg_fn):
            mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams['hop_size'], hparams['audio_sample_rate'],
                                     hparams['binarization_args']['min_sil_duration'])
        else:
            raise BinarizationError(f"Align not found")
        if np.array(mel2ph).max() - 1 >= len(ph_token):
            raise BinarizationError(
                f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(ph_token)}")
        item['mel2ph'] = mel2ph
        item['dur'] = dur

        ph2word = item['ph2word']
        mel2word = [ph2word[p - 1] for p in item['mel2ph']]
        item['mel2word'] = mel2word  # [T_mel]
        dur_word = mel2token_to_dur(mel2word, len(item['word_token']))
        item['dur_word'] = dur_word.tolist()  # [T_word]

    @staticmethod
    def process_pitch(item, n_bos_frames, n_eos_frames):
        wav, mel = item['wav'], item['mel']
        f0 = extract_pitch_simple(item['wav'])
        if sum(f0) == 0:
            raise BinarizationError("Empty f0")
        assert len(mel) == len(f0), (len(mel), len(f0))
        pitch_coarse = f0_to_coarse(f0)
        item['f0'] = f0
        item['pitch'] = pitch_coarse
        if hparams['binarization_args']['with_f0cwt']:
            uv, cont_lf0_lpf = get_cont_lf0(f0)
            logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
            cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
            cwt_spec, scales = get_lf0_cwt(cont_lf0_lpf_norm)
            item['cwt_spec'] = cwt_spec
            item['cwt_mean'] = logf0s_mean_org
            item['cwt_std'] = logf0s_std_org

    @staticmethod
    def get_spk_embed(wav, ctx):
        return ctx['voice_encoder'].embed_utterance(wav.astype(float))

    @property
    def num_workers(self):
        return int(os.getenv('N_PROC', hparams.get('N_PROC', os.cpu_count())))