File size: 8,958 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import torch
import torch.distributions
import torch.nn.functional as F
import torch.optim
import torch.utils.data

from modules.tts.fs import FastSpeech
from tasks.tts.dataset_utils import FastSpeechWordDataset
from tasks.tts.speech_base import SpeechBaseTask
from utils.audio.align import mel2token_to_dur
from utils.audio.pitch.utils import denorm_f0
from utils.commons.hparams import hparams


class FastSpeechTask(SpeechBaseTask):
    def __init__(self):
        super().__init__()
        self.dataset_cls = FastSpeechWordDataset
        self.sil_ph = self.token_encoder.sil_phonemes()

    def build_tts_model(self):
        dict_size = len(self.token_encoder)
        self.model = FastSpeech(dict_size, hparams)

    def run_model(self, sample, infer=False, *args, **kwargs):
        txt_tokens = sample['txt_tokens']  # [B, T_t]
        spk_embed = sample.get('spk_embed')
        spk_id = sample.get('spk_ids')
        if not infer:
            target = sample['mels']  # [B, T_s, 80]
            mel2ph = sample['mel2ph']  # [B, T_s]
            f0 = sample.get('f0')
            uv = sample.get('uv')
            output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id,
                                f0=f0, uv=uv, infer=False)
            losses = {}
            self.add_mel_loss(output['mel_out'], target, losses)
            self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses)
            if hparams['use_pitch_embed']:
                self.add_pitch_loss(output, sample, losses)
            return losses, output
        else:
            use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur'])
            use_gt_f0 = kwargs.get('infer_use_gt_f0', hparams['use_gt_f0'])
            mel2ph, uv, f0 = None, None, None
            if use_gt_dur:
                mel2ph = sample['mel2ph']
            if use_gt_f0:
                f0 = sample['f0']
                uv = sample['uv']
            output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id,
                                f0=f0, uv=uv, infer=True)
            return output

    def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, losses=None):
        """

        :param dur_pred: [B, T], float, log scale
        :param mel2ph: [B, T]
        :param txt_tokens: [B, T]
        :param losses:
        :return:
        """
        B, T = txt_tokens.shape
        nonpadding = (txt_tokens != 0).float()
        dur_gt = mel2token_to_dur(mel2ph, T).float() * nonpadding
        is_sil = torch.zeros_like(txt_tokens).bool()
        for p in self.sil_ph:
            is_sil = is_sil | (txt_tokens == self.token_encoder.encode(p)[0])
        is_sil = is_sil.float()  # [B, T_txt]
        losses['pdur'] = F.mse_loss((dur_pred + 1).log(), (dur_gt + 1).log(), reduction='none')
        losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum()
        losses['pdur'] = losses['pdur'] * hparams['lambda_ph_dur']
        # use linear scale for sentence and word duration
        if hparams['lambda_word_dur'] > 0:
            word_id = (is_sil.cumsum(-1) * (1 - is_sil)).long()
            word_dur_p = dur_pred.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_pred)[:, 1:]
            word_dur_g = dur_gt.new_zeros([B, word_id.max() + 1]).scatter_add(1, word_id, dur_gt)[:, 1:]
            wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none')
            word_nonpadding = (word_dur_g > 0).float()
            wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum()
            losses['wdur'] = wdur_loss * hparams['lambda_word_dur']
        if hparams['lambda_sent_dur'] > 0:
            sent_dur_p = dur_pred.sum(-1)
            sent_dur_g = dur_gt.sum(-1)
            sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean')
            losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur']

    def add_pitch_loss(self, output, sample, losses):
        mel2ph = sample['mel2ph']  # [B, T_s]
        f0 = sample['f0']
        uv = sample['uv']
        nonpadding = (mel2ph != 0).float() if hparams['pitch_type'] == 'frame' \
            else (sample['txt_tokens'] != 0).float()
        p_pred = output['pitch_pred']
        assert p_pred[..., 0].shape == f0.shape
        if hparams['use_uv'] and hparams['pitch_type'] == 'frame':
            assert p_pred[..., 1].shape == uv.shape, (p_pred.shape, uv.shape)
            losses['uv'] = (F.binary_cross_entropy_with_logits(
                p_pred[:, :, 1], uv, reduction='none') * nonpadding).sum() \
                           / nonpadding.sum() * hparams['lambda_uv']
            nonpadding = nonpadding * (uv == 0).float()
        f0_pred = p_pred[:, :, 0]
        losses['f0'] = (F.l1_loss(f0_pred, f0, reduction='none') * nonpadding).sum() \
                       / nonpadding.sum() * hparams['lambda_f0']

    def save_valid_result(self, sample, batch_idx, model_out):
        sr = hparams['audio_sample_rate']
        f0_gt = None
        mel_out = model_out['mel_out']
        if sample.get('f0') is not None:
            f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu())
        self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt)
        if self.global_step > 0:
            wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt)
            self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr)
            # with gt duration
            model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True)
            dur_info = self.get_plot_dur_info(sample, model_out)
            del dur_info['dur_pred']
            wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
            self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr)
            self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_gdur_{batch_idx}',
                          dur_info=dur_info, f0s=f0_gt)

            # with pred duration
            if not hparams['use_gt_dur']:
                model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False)
                dur_info = self.get_plot_dur_info(sample, model_out)
                self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}',
                              dur_info=dur_info, f0s=f0_gt)
                wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt)
                self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr)
        # gt wav
        if self.global_step <= hparams['valid_infer_interval']:
            mel_gt = sample['mels'][0].cpu()
            wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt)
            self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)

    def get_plot_dur_info(self, sample, model_out):
        T_txt = sample['txt_tokens'].shape[1]
        dur_gt = mel2token_to_dur(sample['mel2ph'], T_txt)[0]
        dur_pred = model_out['dur'] if 'dur' in model_out else dur_gt
        txt = self.token_encoder.decode(sample['txt_tokens'][0].cpu().numpy())
        txt = txt.split(" ")
        return {'dur_gt': dur_gt, 'dur_pred': dur_pred, 'txt': txt}

    def test_step(self, sample, batch_idx):
        """

        :param sample:
        :param batch_idx:
        :return:
        """
        assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference'
        outputs = self.run_model(sample, infer=True)
        text = sample['text'][0]
        item_name = sample['item_name'][0]
        tokens = sample['txt_tokens'][0].cpu().numpy()
        mel_gt = sample['mels'][0].cpu().numpy()
        mel_pred = outputs['mel_out'][0].cpu().numpy()
        mel2ph = sample['mel2ph'][0].cpu().numpy()
        mel2ph_pred = outputs['mel2ph'][0].cpu().numpy()
        str_phs = self.token_encoder.decode(tokens, strip_padding=True)
        base_fn = f'[{batch_idx:06d}][{item_name.replace("%", "_")}][%s]'
        if text is not None:
            base_fn += text.replace(":", "$3A")[:80]
        base_fn = base_fn.replace(' ', '_')
        gen_dir = self.gen_dir
        wav_pred = self.vocoder.spec2wav(mel_pred)
        self.saving_result_pool.add_job(self.save_result, args=[
            wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs, mel2ph_pred])
        if hparams['save_gt']:
            wav_gt = self.vocoder.spec2wav(mel_gt)
            self.saving_result_pool.add_job(self.save_result, args=[
                wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs, mel2ph])
        print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}")
        return {
            'item_name': item_name,
            'text': text,
            'ph_tokens': self.token_encoder.decode(tokens.tolist()),
            'wav_fn_pred': base_fn % 'P',
            'wav_fn_gt': base_fn % 'G',
        }