File size: 6,211 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from modules.commons.layers import LayerNorm, Embedding


class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


def init_weights_func(m):
    classname = m.__class__.__name__
    if classname.find("Conv1d") != -1:
        torch.nn.init.xavier_uniform_(m.weight)


class ResidualBlock(nn.Module):
    """Implements conv->PReLU->norm n-times"""

    def __init__(self, channels, kernel_size, dilation, n=2, norm_type='bn', dropout=0.0,
                 c_multiple=2, ln_eps=1e-12):
        super(ResidualBlock, self).__init__()

        if norm_type == 'bn':
            norm_builder = lambda: nn.BatchNorm1d(channels)
        elif norm_type == 'in':
            norm_builder = lambda: nn.InstanceNorm1d(channels, affine=True)
        elif norm_type == 'gn':
            norm_builder = lambda: nn.GroupNorm(8, channels)
        elif norm_type == 'ln':
            norm_builder = lambda: LayerNorm(channels, dim=1, eps=ln_eps)
        else:
            norm_builder = lambda: nn.Identity()

        self.blocks = [
            nn.Sequential(
                norm_builder(),
                nn.Conv1d(channels, c_multiple * channels, kernel_size, dilation=dilation,
                          padding=(dilation * (kernel_size - 1)) // 2),
                LambdaLayer(lambda x: x * kernel_size ** -0.5),
                nn.GELU(),
                nn.Conv1d(c_multiple * channels, channels, 1, dilation=dilation),
            )
            for i in range(n)
        ]

        self.blocks = nn.ModuleList(self.blocks)
        self.dropout = dropout

    def forward(self, x):
        nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
        for b in self.blocks:
            x_ = b(x)
            if self.dropout > 0 and self.training:
                x_ = F.dropout(x_, self.dropout, training=self.training)
            x = x + x_
            x = x * nonpadding
        return x


class ConvBlocks(nn.Module):
    """Decodes the expanded phoneme encoding into spectrograms"""

    def __init__(self, hidden_size, out_dims, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5,
                 init_weights=True, is_BTC=True, num_layers=None, post_net_kernel=3):
        super(ConvBlocks, self).__init__()
        self.is_BTC = is_BTC
        if num_layers is not None:
            dilations = [1] * num_layers
        self.res_blocks = nn.Sequential(
            *[ResidualBlock(hidden_size, kernel_size, d,
                            n=layers_in_block, norm_type=norm_type, c_multiple=c_multiple,
                            dropout=dropout, ln_eps=ln_eps)
              for d in dilations],
        )
        if norm_type == 'bn':
            norm = nn.BatchNorm1d(hidden_size)
        elif norm_type == 'in':
            norm = nn.InstanceNorm1d(hidden_size, affine=True)
        elif norm_type == 'gn':
            norm = nn.GroupNorm(8, hidden_size)
        elif norm_type == 'ln':
            norm = LayerNorm(hidden_size, dim=1, eps=ln_eps)
        self.last_norm = norm
        self.post_net1 = nn.Conv1d(hidden_size, out_dims, kernel_size=post_net_kernel,
                                   padding=post_net_kernel // 2)
        if init_weights:
            self.apply(init_weights_func)

    def forward(self, x, nonpadding=None):
        """

        :param x: [B, T, H]
        :return:  [B, T, H]
        """
        if self.is_BTC:
            x = x.transpose(1, 2)
        if nonpadding is None:
            nonpadding = (x.abs().sum(1) > 0).float()[:, None, :]
        elif self.is_BTC:
            nonpadding = nonpadding.transpose(1, 2)
        x = self.res_blocks(x) * nonpadding
        x = self.last_norm(x) * nonpadding
        x = self.post_net1(x) * nonpadding
        if self.is_BTC:
            x = x.transpose(1, 2)
        return x


class TextConvEncoder(ConvBlocks):
    def __init__(self, dict_size, hidden_size, out_dims, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5, init_weights=True, num_layers=None, post_net_kernel=3):
        super().__init__(hidden_size, out_dims, dilations, kernel_size,
                         norm_type, layers_in_block, c_multiple,
                         dropout, ln_eps, init_weights, num_layers=num_layers,
                         post_net_kernel=post_net_kernel)
        self.embed_tokens = Embedding(dict_size, hidden_size, 0)
        self.embed_scale = math.sqrt(hidden_size)

    def forward(self, txt_tokens):
        """

        :param txt_tokens: [B, T]
        :return: {
            'encoder_out': [B x T x C]
        }
        """
        x = self.embed_scale * self.embed_tokens(txt_tokens)
        return super().forward(x)


class ConditionalConvBlocks(ConvBlocks):
    def __init__(self, hidden_size, c_cond, c_out, dilations, kernel_size,
                 norm_type='ln', layers_in_block=2, c_multiple=2,
                 dropout=0.0, ln_eps=1e-5, init_weights=True, is_BTC=True, num_layers=None):
        super().__init__(hidden_size, c_out, dilations, kernel_size,
                         norm_type, layers_in_block, c_multiple,
                         dropout, ln_eps, init_weights, is_BTC=False, num_layers=num_layers)
        self.g_prenet = nn.Conv1d(c_cond, hidden_size, 3, padding=1)
        self.is_BTC_ = is_BTC
        if init_weights:
            self.g_prenet.apply(init_weights_func)

    def forward(self, x, cond, nonpadding=None):
        if self.is_BTC_:
            x = x.transpose(1, 2)
            cond = cond.transpose(1, 2)
            if nonpadding is not None:
                nonpadding = nonpadding.transpose(1, 2)
        if nonpadding is None:
            nonpadding = x.abs().sum(1)[:, None]
        x = x + self.g_prenet(cond)
        x = x * nonpadding
        x = super(ConditionalConvBlocks, self).forward(x)  # input needs to be BTC
        if self.is_BTC_:
            x = x.transpose(1, 2)
        return x