File size: 11,023 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15e73a1
 
 
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c5bdb
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import math
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear

from modules.commons.conv import ConvBlocks, ConditionalConvBlocks
from modules.commons.layers import Embedding
from modules.commons.rel_transformer import RelTransformerEncoder
from modules.commons.transformer import MultiheadAttention, FFTBlocks
from modules.tts.commons.align_ops import clip_mel2token_to_multiple, build_word_mask, expand_states, mel2ph_to_mel2word
from modules.tts.fs import FS_DECODERS, FastSpeech
from modules.tts.portaspeech.fvae import FVAE
from utils.commons.meters import Timer
from utils.nn.seq_utils import group_hidden_by_segs


class SinusoidalPosEmb(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        """

        :param x: [B, T]
        :return: [B, T, H]
        """
        device = x.device
        half_dim = self.dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
        emb = x[:, :, None] * emb[None, :]
        emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
        return emb


class PortaSpeech(FastSpeech):
    def __init__(self, ph_dict_size, word_dict_size, hparams, out_dims=None):
        super().__init__(ph_dict_size, hparams, out_dims)
        # build linguistic encoder
        if hparams['use_word_encoder']:
            self.word_encoder = RelTransformerEncoder(
                word_dict_size, self.hidden_size, self.hidden_size, self.hidden_size, 2,
                hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
        if hparams['dur_level'] == 'word':
            if hparams['word_encoder_type'] == 'rel_fft':
                self.ph2word_encoder = RelTransformerEncoder(
                    0, self.hidden_size, self.hidden_size, self.hidden_size, 2,
                    hparams['word_enc_layers'], hparams['enc_ffn_kernel_size'])
            if hparams['word_encoder_type'] == 'fft':
                self.ph2word_encoder = FFTBlocks(
                    self.hidden_size, hparams['word_enc_layers'], 1, num_heads=hparams['num_heads'])
            self.sin_pos = SinusoidalPosEmb(self.hidden_size)
            self.enc_pos_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.dec_query_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.dec_res_proj = nn.Linear(2 * self.hidden_size, self.hidden_size)
            self.attn = MultiheadAttention(self.hidden_size, 1, encoder_decoder_attention=True, bias=False)
            self.attn.enable_torch_version = False
            if hparams['text_encoder_postnet']:
                self.text_encoder_postnet = ConvBlocks(
                    self.hidden_size, self.hidden_size, [1] * 3, 5, layers_in_block=2)
        else:
            self.sin_pos = SinusoidalPosEmb(self.hidden_size)
        # build VAE decoder
        if hparams['use_fvae']:
            del self.decoder
            del self.mel_out
            self.fvae = FVAE(
                c_in_out=self.out_dims,
                hidden_size=hparams['fvae_enc_dec_hidden'], c_latent=hparams['latent_size'],
                kernel_size=hparams['fvae_kernel_size'],
                enc_n_layers=hparams['fvae_enc_n_layers'],
                dec_n_layers=hparams['fvae_dec_n_layers'],
                c_cond=self.hidden_size,
                use_prior_flow=hparams['use_prior_flow'],
                flow_hidden=hparams['prior_flow_hidden'],
                flow_kernel_size=hparams['prior_flow_kernel_size'],
                flow_n_steps=hparams['prior_flow_n_blocks'],
                strides=[hparams['fvae_strides']],
                encoder_type=hparams['fvae_encoder_type'],
                decoder_type=hparams['fvae_decoder_type'],
            )
        else:
            self.decoder = FS_DECODERS[hparams['decoder_type']](hparams)
            self.mel_out = Linear(self.hidden_size, self.out_dims, bias=True)
        if hparams['use_pitch_embed']:
            self.pitch_embed = Embedding(300, self.hidden_size, 0)
        if self.hparams['add_word_pos']:
            self.word_pos_proj = Linear(self.hidden_size, self.hidden_size)

    def build_embedding(self, dictionary, embed_dim):
        num_embeddings = len(dictionary)
        emb = Embedding(num_embeddings, embed_dim, self.padding_idx)
        return emb

    def forward(self, txt_tokens, word_tokens, ph2word, word_len, mel2word=None, mel2ph=None,
                spk_embed=None, spk_id=None, pitch=None, infer=False, tgt_mels=None,
                global_step=None, *args, **kwargs):
        ret = {}
        x, tgt_nonpadding = self.run_text_encoder(
            txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, ret)
        style_embed = self.forward_style_embed(spk_embed, spk_id)
        x = x + style_embed
        x = x * tgt_nonpadding
        ret['nonpadding'] = tgt_nonpadding
        if self.hparams['use_pitch_embed']:
            x = x + self.pitch_embed(pitch)
        ret['decoder_inp'] = x
        ret['mel_out_fvae'] = ret['mel_out'] = self.run_decoder(x, tgt_nonpadding, ret, infer, tgt_mels, global_step)
        return ret

    def run_text_encoder(self, txt_tokens, word_tokens, ph2word, word_len, mel2word, mel2ph, ret):
        word2word = torch.arange(word_len)[None, :].to(ph2word.device) + 1  # [B, T_mel, T_word]
        src_nonpadding = (txt_tokens > 0).float()[:, :, None]
        ph_encoder_out = self.encoder(txt_tokens) * src_nonpadding
        if self.hparams['use_word_encoder']:
            word_encoder_out = self.word_encoder(word_tokens)
            ph_encoder_out = ph_encoder_out + expand_states(word_encoder_out, ph2word)
        if self.hparams['dur_level'] == 'word':
            word_encoder_out = 0
            h_ph_gb_word = group_hidden_by_segs(ph_encoder_out, ph2word, word_len)[0]
            word_encoder_out = word_encoder_out + self.ph2word_encoder(h_ph_gb_word)
            if self.hparams['use_word_encoder']:
                word_encoder_out = word_encoder_out + self.word_encoder(word_tokens)
            mel2word = self.forward_dur(ph_encoder_out, mel2word, ret, ph2word=ph2word, word_len=word_len)
            mel2word = clip_mel2token_to_multiple(mel2word, self.hparams['frames_multiple'])
            tgt_nonpadding = (mel2word > 0).float()[:, :, None]
            enc_pos = self.get_pos_embed(word2word, ph2word)  # [B, T_ph, H]
            dec_pos = self.get_pos_embed(word2word, mel2word)  # [B, T_mel, H]
            dec_word_mask = build_word_mask(mel2word, ph2word)  # [B, T_mel, T_ph]
            x, weight = self.attention(ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask)
            if self.hparams['add_word_pos']:
                x = x + self.word_pos_proj(dec_pos)
            ret['attn'] = weight
        else:
            mel2ph = self.forward_dur(ph_encoder_out, mel2ph, ret)
            mel2ph = clip_mel2token_to_multiple(mel2ph, self.hparams['frames_multiple'])
            mel2word = mel2ph_to_mel2word(mel2ph, ph2word)
            x = expand_states(ph_encoder_out, mel2ph)
            if self.hparams['add_word_pos']:
                dec_pos = self.get_pos_embed(word2word, mel2word)  # [B, T_mel, H]
                x = x + self.word_pos_proj(dec_pos)
            tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
        if self.hparams['use_word_encoder']:
            x = x + expand_states(word_encoder_out, mel2word)
        return x, tgt_nonpadding

    def attention(self, ph_encoder_out, enc_pos, word_encoder_out, dec_pos, mel2word, dec_word_mask):
        ph_kv = self.enc_pos_proj(torch.cat([ph_encoder_out, enc_pos], -1))
        word_enc_out_expend = expand_states(word_encoder_out, mel2word)
        word_enc_out_expend = torch.cat([word_enc_out_expend, dec_pos], -1)
        if self.hparams['text_encoder_postnet']:
            word_enc_out_expend = self.dec_res_proj(word_enc_out_expend)
            word_enc_out_expend = self.text_encoder_postnet(word_enc_out_expend)
            dec_q = x_res = word_enc_out_expend
        else:
            dec_q = self.dec_query_proj(word_enc_out_expend)
            x_res = self.dec_res_proj(word_enc_out_expend)
        ph_kv, dec_q = ph_kv.transpose(0, 1), dec_q.transpose(0, 1)
        x, (weight, _) = self.attn(dec_q, ph_kv, ph_kv, attn_mask=(1 - dec_word_mask) * -1e9)
        x = x.transpose(0, 1)
        x = x + x_res
        return x, weight

    def run_decoder(self, x, tgt_nonpadding, ret, infer, tgt_mels=None, global_step=0):
        if not self.hparams['use_fvae']:
            x = self.decoder(x)
            x = self.mel_out(x)
            ret['kl'] = 0
            return x * tgt_nonpadding
        else:
            decoder_inp = x
            x = x.transpose(1, 2)  # [B, H, T]
            tgt_nonpadding_BHT = tgt_nonpadding.transpose(1, 2)  # [B, H, T]
            if infer:
                z = self.fvae(cond=x, infer=True)
            else:
                tgt_mels = tgt_mels.transpose(1, 2)  # [B, 80, T]
                z, ret['kl'], ret['z_p'], ret['m_q'], ret['logs_q'] = self.fvae(
                    tgt_mels, tgt_nonpadding_BHT, cond=x)
                if global_step < self.hparams['posterior_start_steps']:
                    z = torch.randn_like(z)
            x_recon = self.fvae.decoder(z, nonpadding=tgt_nonpadding_BHT, cond=x).transpose(1, 2)
            ret['pre_mel_out'] = x_recon
            return x_recon

    def forward_dur(self, dur_input, mel2word, ret, **kwargs):
        """

        :param dur_input: [B, T_txt, H]
        :param mel2ph: [B, T_mel]
        :param txt_tokens: [B, T_txt]
        :param ret:
        :return:
        """
        src_padding = dur_input.data.abs().sum(-1) == 0
        dur_input = dur_input.detach() + self.hparams['predictor_grad'] * (dur_input - dur_input.detach())
        dur = self.dur_predictor(dur_input, src_padding)
        if self.hparams['dur_level'] == 'word':
            word_len = kwargs['word_len']
            ph2word = kwargs['ph2word']
            B, T_ph = ph2word.shape
            dur = torch.zeros([B, word_len.max() + 1]).to(ph2word.device).scatter_add(1, ph2word, dur)
            dur = dur[:, 1:]
        ret['dur'] = dur
        if mel2word is None:
            mel2word = self.length_regulator(dur).detach()
        return mel2word

    def get_pos_embed(self, word2word, x2word):
        x_pos = build_word_mask(word2word, x2word).float()  # [B, T_word, T_ph]
        x_pos = (x_pos.cumsum(-1) / x_pos.sum(-1).clamp(min=1)[..., None] * x_pos).sum(1)
        x_pos = self.sin_pos(x_pos.float())  # [B, T_ph, H]
        return x_pos

    def store_inverse_all(self):
        def remove_weight_norm(m):
            try:
                if hasattr(m, 'store_inverse'):
                    m.store_inverse()
                nn.utils.remove_weight_norm(m)
            except ValueError:  # this module didn't have weight norm
                return

        self.apply(remove_weight_norm)