Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
class LayerNorm(torch.nn.LayerNorm): | |
"""Layer normalization module. | |
:param int nout: output dim size | |
:param int dim: dimension to be normalized | |
""" | |
def __init__(self, nout, dim=-1, eps=1e-5): | |
"""Construct an LayerNorm object.""" | |
super(LayerNorm, self).__init__(nout, eps=eps) | |
self.dim = dim | |
def forward(self, x): | |
"""Apply layer normalization. | |
:param torch.Tensor x: input tensor | |
:return: layer normalized tensor | |
:rtype torch.Tensor | |
""" | |
if self.dim == -1: | |
return super(LayerNorm, self).forward(x) | |
return super(LayerNorm, self).forward(x.transpose(1, -1)).transpose(1, -1) | |
class Reshape(nn.Module): | |
def __init__(self, *args): | |
super(Reshape, self).__init__() | |
self.shape = args | |
def forward(self, x): | |
return x.view(self.shape) | |
class Permute(nn.Module): | |
def __init__(self, *args): | |
super(Permute, self).__init__() | |
self.args = args | |
def forward(self, x): | |
return x.permute(self.args) | |
def Embedding(num_embeddings, embedding_dim, padding_idx=None): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
if padding_idx is not None: | |
nn.init.constant_(m.weight[padding_idx], 0) | |
return m | |