Spaces:
Runtime error
Runtime error
import filecmp | |
import os | |
import traceback | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.distributed as dist | |
import torch.nn.functional as F | |
import torch.optim | |
import torch.utils.data | |
import yaml | |
from tqdm import tqdm | |
import utils | |
from tasks.tts.dataset_utils import BaseSpeechDataset | |
from tasks.tts.tts_utils import parse_mel_losses, parse_dataset_configs, load_data_preprocessor, load_data_binarizer | |
from tasks.tts.vocoder_infer.base_vocoder import BaseVocoder, get_vocoder_cls | |
from utils.audio.align import mel2token_to_dur | |
from utils.audio.io import save_wav | |
from utils.audio.pitch_extractors import extract_pitch_simple | |
from utils.commons.base_task import BaseTask | |
from utils.commons.ckpt_utils import load_ckpt | |
from utils.commons.dataset_utils import data_loader, BaseConcatDataset | |
from utils.commons.hparams import hparams | |
from utils.commons.multiprocess_utils import MultiprocessManager | |
from utils.commons.tensor_utils import tensors_to_scalars | |
from utils.metrics.ssim import ssim | |
from utils.nn.model_utils import print_arch | |
from utils.nn.schedulers import RSQRTSchedule, NoneSchedule, WarmupSchedule | |
from utils.nn.seq_utils import weights_nonzero_speech | |
from utils.plot.plot import spec_to_figure | |
from utils.text.text_encoder import build_token_encoder | |
import matplotlib.pyplot as plt | |
class SpeechBaseTask(BaseTask): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.dataset_cls = BaseSpeechDataset | |
self.vocoder = None | |
data_dir = hparams['binary_data_dir'] | |
if not hparams['use_word_input']: | |
self.token_encoder = build_token_encoder(f'{data_dir}/phone_set.json') | |
else: | |
self.token_encoder = build_token_encoder(f'{data_dir}/word_set.json') | |
self.padding_idx = self.token_encoder.pad() | |
self.eos_idx = self.token_encoder.eos() | |
self.seg_idx = self.token_encoder.seg() | |
self.saving_result_pool = None | |
self.saving_results_futures = None | |
self.mel_losses = parse_mel_losses() | |
self.max_tokens, self.max_sentences, \ | |
self.max_valid_tokens, self.max_valid_sentences = parse_dataset_configs() | |
########################## | |
# datasets | |
########################## | |
def train_dataloader(self): | |
if hparams['train_sets'] != '': | |
train_sets = hparams['train_sets'].split("|") | |
# check if all train_sets have the same spk map and dictionary | |
binary_data_dir = hparams['binary_data_dir'] | |
file_to_cmp = ['phone_set.json'] | |
if os.path.exists(f'{binary_data_dir}/word_set.json'): | |
file_to_cmp.append('word_set.json') | |
if hparams['use_spk_id']: | |
file_to_cmp.append('spk_map.json') | |
for f in file_to_cmp: | |
for ds_name in train_sets: | |
base_file = os.path.join(binary_data_dir, f) | |
ds_file = os.path.join(ds_name, f) | |
assert filecmp.cmp(base_file, ds_file), \ | |
f'{f} in {ds_name} is not same with that in {binary_data_dir}.' | |
train_dataset = BaseConcatDataset([ | |
self.dataset_cls(prefix='train', shuffle=True, data_dir=ds_name) for ds_name in train_sets]) | |
else: | |
train_dataset = self.dataset_cls(prefix=hparams['train_set_name'], shuffle=True) | |
return self.build_dataloader(train_dataset, True, self.max_tokens, self.max_sentences, | |
endless=hparams['endless_ds']) | |
def val_dataloader(self): | |
valid_dataset = self.dataset_cls(prefix=hparams['valid_set_name'], shuffle=False) | |
return self.build_dataloader(valid_dataset, False, self.max_valid_tokens, self.max_valid_sentences, | |
batch_by_size=False) | |
def test_dataloader(self): | |
test_dataset = self.dataset_cls(prefix=hparams['test_set_name'], shuffle=False) | |
self.test_dl = self.build_dataloader( | |
test_dataset, False, self.max_valid_tokens, self.max_valid_sentences, batch_by_size=False) | |
return self.test_dl | |
def build_dataloader(self, dataset, shuffle, max_tokens=None, max_sentences=None, | |
required_batch_size_multiple=-1, endless=False, batch_by_size=True): | |
devices_cnt = torch.cuda.device_count() | |
if devices_cnt == 0: | |
devices_cnt = 1 | |
if required_batch_size_multiple == -1: | |
required_batch_size_multiple = devices_cnt | |
def shuffle_batches(batches): | |
np.random.shuffle(batches) | |
return batches | |
if max_tokens is not None: | |
max_tokens *= devices_cnt | |
if max_sentences is not None: | |
max_sentences *= devices_cnt | |
indices = dataset.ordered_indices() | |
if batch_by_size: | |
batch_sampler = utils.commons.dataset_utils.batch_by_size( | |
indices, dataset.num_tokens, max_tokens=max_tokens, max_sentences=max_sentences, | |
required_batch_size_multiple=required_batch_size_multiple, | |
) | |
else: | |
batch_sampler = [] | |
for i in range(0, len(indices), max_sentences): | |
batch_sampler.append(indices[i:i + max_sentences]) | |
if shuffle: | |
batches = shuffle_batches(list(batch_sampler)) | |
if endless: | |
batches = [b for _ in range(1000) for b in shuffle_batches(list(batch_sampler))] | |
else: | |
batches = batch_sampler | |
if endless: | |
batches = [b for _ in range(1000) for b in batches] | |
num_workers = dataset.num_workers | |
if self.trainer.use_ddp: | |
num_replicas = dist.get_world_size() | |
rank = dist.get_rank() | |
batches = [x[rank::num_replicas] for x in batches if len(x) % num_replicas == 0] | |
return torch.utils.data.DataLoader(dataset, | |
collate_fn=dataset.collater, | |
batch_sampler=batches, | |
num_workers=num_workers, | |
pin_memory=False) | |
########################## | |
# scheduler and optimizer | |
########################## | |
def build_model(self): | |
self.build_tts_model() | |
if hparams['load_ckpt'] != '': | |
load_ckpt(self.model, hparams['load_ckpt']) | |
print_arch(self.model) | |
return self.model | |
def build_tts_model(self): | |
raise NotImplementedError | |
def build_scheduler(self, optimizer): | |
if hparams['scheduler'] == 'rsqrt': | |
return RSQRTSchedule(optimizer, hparams['lr'], hparams['warmup_updates'], hparams['hidden_size']) | |
elif hparams['scheduler'] == 'warmup': | |
return WarmupSchedule(optimizer, hparams['lr'], hparams['warmup_updates']) | |
elif hparams['scheduler'] == 'step_lr': | |
return torch.optim.lr_scheduler.StepLR( | |
optimizer=optimizer, step_size=500, gamma=0.998) | |
else: | |
return NoneSchedule(optimizer, hparams['lr']) | |
def build_optimizer(self, model): | |
self.optimizer = optimizer = torch.optim.AdamW( | |
model.parameters(), | |
lr=hparams['lr'], | |
betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), | |
weight_decay=hparams['weight_decay']) | |
return optimizer | |
########################## | |
# training and validation | |
########################## | |
def _training_step(self, sample, batch_idx, _): | |
loss_output, _ = self.run_model(sample) | |
total_loss = sum([v for v in loss_output.values() if isinstance(v, torch.Tensor) and v.requires_grad]) | |
loss_output['batch_size'] = sample['txt_tokens'].size()[0] | |
return total_loss, loss_output | |
def run_model(self, sample, infer=False): | |
""" | |
:param sample: a batch of data | |
:param infer: bool, run in infer mode | |
:return: | |
if not infer: | |
return losses, model_out | |
if infer: | |
return model_out | |
""" | |
raise NotImplementedError | |
def validation_start(self): | |
self.vocoder = get_vocoder_cls(hparams['vocoder'])() | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(sample) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = tensors_to_scalars(outputs) | |
if self.global_step % hparams['valid_infer_interval'] == 0 \ | |
and batch_idx < hparams['num_valid_plots']: | |
self.save_valid_result(sample, batch_idx, model_out) | |
return outputs | |
def validation_end(self, outputs): | |
self.vocoder = None | |
return super(SpeechBaseTask, self).validation_end(outputs) | |
def save_valid_result(self, sample, batch_idx, model_out): | |
raise NotImplementedError | |
########################## | |
# losses | |
########################## | |
def add_mel_loss(self, mel_out, target, losses, postfix=''): | |
for loss_name, lambd in self.mel_losses.items(): | |
losses[f'{loss_name}{postfix}'] = getattr(self, f'{loss_name}_loss')(mel_out, target) * lambd | |
def l1_loss(self, decoder_output, target): | |
# decoder_output : B x T x n_mel | |
# target : B x T x n_mel | |
l1_loss = F.l1_loss(decoder_output, target, reduction='none') | |
weights = weights_nonzero_speech(target) | |
l1_loss = (l1_loss * weights).sum() / weights.sum() | |
return l1_loss | |
def mse_loss(self, decoder_output, target): | |
# decoder_output : B x T x n_mel | |
# target : B x T x n_mel | |
assert decoder_output.shape == target.shape | |
mse_loss = F.mse_loss(decoder_output, target, reduction='none') | |
weights = weights_nonzero_speech(target) | |
mse_loss = (mse_loss * weights).sum() / weights.sum() | |
return mse_loss | |
def ssim_loss(self, decoder_output, target, bias=6.0): | |
# decoder_output : B x T x n_mel | |
# target : B x T x n_mel | |
assert decoder_output.shape == target.shape | |
weights = weights_nonzero_speech(target) | |
decoder_output = decoder_output[:, None] + bias | |
target = target[:, None] + bias | |
ssim_loss = 1 - ssim(decoder_output, target, size_average=False) | |
ssim_loss = (ssim_loss * weights).sum() / weights.sum() | |
return ssim_loss | |
def plot_mel(self, batch_idx, spec_out, spec_gt=None, name=None, title='', f0s=None, dur_info=None): | |
vmin = hparams['mel_vmin'] | |
vmax = hparams['mel_vmax'] | |
if len(spec_out.shape) == 3: | |
spec_out = spec_out[0] | |
if isinstance(spec_out, torch.Tensor): | |
spec_out = spec_out.cpu().numpy() | |
if spec_gt is not None: | |
if len(spec_gt.shape) == 3: | |
spec_gt = spec_gt[0] | |
if isinstance(spec_gt, torch.Tensor): | |
spec_gt = spec_gt.cpu().numpy() | |
max_len = max(len(spec_gt), len(spec_out)) | |
if max_len - len(spec_gt) > 0: | |
spec_gt = np.pad(spec_gt, [[0, max_len - len(spec_gt)], [0, 0]], mode='constant', | |
constant_values=vmin) | |
if max_len - len(spec_out) > 0: | |
spec_out = np.pad(spec_out, [[0, max_len - len(spec_out)], [0, 0]], mode='constant', | |
constant_values=vmin) | |
spec_out = np.concatenate([spec_out, spec_gt], -1) | |
name = f'mel_val_{batch_idx}' if name is None else name | |
self.logger.add_figure(name, spec_to_figure( | |
spec_out, vmin, vmax, title=title, f0s=f0s, dur_info=dur_info), self.global_step) | |
########################## | |
# testing | |
########################## | |
def test_start(self): | |
self.saving_result_pool = MultiprocessManager(int(os.getenv('N_PROC', os.cpu_count()))) | |
self.saving_results_futures = [] | |
self.gen_dir = os.path.join( | |
hparams['work_dir'], f'generated_{self.trainer.global_step}_{hparams["gen_dir_name"]}') | |
self.vocoder: BaseVocoder = get_vocoder_cls(hparams['vocoder'])() | |
os.makedirs(self.gen_dir, exist_ok=True) | |
os.makedirs(f'{self.gen_dir}/wavs', exist_ok=True) | |
os.makedirs(f'{self.gen_dir}/plot', exist_ok=True) | |
if hparams.get('save_mel_npy', False): | |
os.makedirs(f'{self.gen_dir}/mel_npy', exist_ok=True) | |
def test_step(self, sample, batch_idx): | |
""" | |
:param sample: | |
:param batch_idx: | |
:return: | |
""" | |
assert sample['txt_tokens'].shape[0] == 1, 'only support batch_size=1 in inference' | |
outputs = self.run_model(sample, infer=True) | |
text = sample['text'][0] | |
item_name = sample['item_name'][0] | |
tokens = sample['txt_tokens'][0].cpu().numpy() | |
mel_gt = sample['mels'][0].cpu().numpy() | |
mel_pred = outputs['mel_out'][0].cpu().numpy() | |
str_phs = self.token_encoder.decode(tokens, strip_padding=True) | |
base_fn = f'[{self.results_id:06d}][{item_name.replace("%", "_")}][%s]' | |
if text is not None: | |
base_fn += text.replace(":", "$3A")[:80] | |
base_fn = base_fn.replace(' ', '_') | |
gen_dir = self.gen_dir | |
wav_pred = self.vocoder.spec2wav(mel_pred) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_pred, mel_pred, base_fn % 'P', gen_dir, str_phs]) | |
if hparams['save_gt']: | |
wav_gt = self.vocoder.spec2wav(mel_gt) | |
self.saving_result_pool.add_job(self.save_result, args=[ | |
wav_gt, mel_gt, base_fn % 'G', gen_dir, str_phs]) | |
print(f"Pred_shape: {mel_pred.shape}, gt_shape: {mel_gt.shape}") | |
return { | |
'item_name': item_name, | |
'text': text, | |
'ph_tokens': self.token_encoder.decode(tokens.tolist()), | |
'wav_fn_pred': base_fn % 'P', | |
'wav_fn_gt': base_fn % 'G', | |
} | |
def save_result(wav_out, mel, base_fn, gen_dir, str_phs=None, mel2ph=None, alignment=None): | |
save_wav(wav_out, f'{gen_dir}/wavs/{base_fn}.wav', hparams['audio_sample_rate'], | |
norm=hparams['out_wav_norm']) | |
fig = plt.figure(figsize=(14, 10)) | |
spec_vmin = hparams['mel_vmin'] | |
spec_vmax = hparams['mel_vmax'] | |
heatmap = plt.pcolor(mel.T, vmin=spec_vmin, vmax=spec_vmax) | |
fig.colorbar(heatmap) | |
try: | |
f0 = extract_pitch_simple(wav_out) | |
f0 = f0 / 10 * (f0 > 0) | |
plt.plot(f0, c='white', linewidth=1, alpha=0.6) | |
if mel2ph is not None and str_phs is not None: | |
decoded_txt = str_phs.split(" ") | |
dur = mel2token_to_dur(torch.LongTensor(mel2ph)[None, :], len(decoded_txt))[0].numpy() | |
dur = [0] + list(np.cumsum(dur)) | |
for i in range(len(dur) - 1): | |
shift = (i % 20) + 1 | |
plt.text(dur[i], shift, decoded_txt[i]) | |
plt.hlines(shift, dur[i], dur[i + 1], colors='b' if decoded_txt[i] != '|' else 'black') | |
plt.vlines(dur[i], 0, 5, colors='b' if decoded_txt[i] != '|' else 'black', | |
alpha=1, linewidth=1) | |
plt.tight_layout() | |
plt.savefig(f'{gen_dir}/plot/{base_fn}.png', format='png') | |
plt.close(fig) | |
if hparams.get('save_mel_npy', False): | |
np.save(f'{gen_dir}/mel_npy/{base_fn}', mel) | |
if alignment is not None: | |
fig, ax = plt.subplots(figsize=(12, 16)) | |
im = ax.imshow(alignment, aspect='auto', origin='lower', | |
interpolation='none') | |
decoded_txt = str_phs.split(" ") | |
ax.set_yticks(np.arange(len(decoded_txt))) | |
ax.set_yticklabels(list(decoded_txt), fontsize=6) | |
fig.colorbar(im, ax=ax) | |
fig.savefig(f'{gen_dir}/attn_plot/{base_fn}_attn.png', format='png') | |
plt.close(fig) | |
except Exception: | |
traceback.print_exc() | |
return None | |
def test_end(self, outputs): | |
pd.DataFrame(outputs).to_csv(f'{self.gen_dir}/meta.csv') | |
for _1, _2 in tqdm(self.saving_result_pool.get_results(), total=len(self.saving_result_pool)): | |
pass | |
return {} | |