Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from torch.utils.data import DistributedSampler | |
from utils.commons.dataset_utils import BaseDataset, collate_1d, collate_2d | |
from utils.commons.hparams import hparams | |
from utils.commons.indexed_datasets import IndexedDataset | |
class EndlessDistributedSampler(DistributedSampler): | |
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): | |
if num_replicas is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
num_replicas = dist.get_world_size() | |
if rank is None: | |
if not dist.is_available(): | |
raise RuntimeError("Requires distributed package to be available") | |
rank = dist.get_rank() | |
self.dataset = dataset | |
self.num_replicas = num_replicas | |
self.rank = rank | |
self.epoch = 0 | |
self.shuffle = shuffle | |
g = torch.Generator() | |
g.manual_seed(self.epoch) | |
if self.shuffle: | |
indices = [i for _ in range(1000) for i in torch.randperm( | |
len(self.dataset), generator=g).tolist()] | |
else: | |
indices = [i for _ in range(1000) for i in list(range(len(self.dataset)))] | |
indices = indices[:len(indices) // self.num_replicas * self.num_replicas] | |
indices = indices[self.rank::self.num_replicas] | |
self.indices = indices | |
def __iter__(self): | |
return iter(self.indices) | |
def __len__(self): | |
return len(self.indices) | |
class VocoderDataset(BaseDataset): | |
def __init__(self, prefix, shuffle=False): | |
super().__init__(shuffle) | |
self.hparams = hparams | |
self.prefix = prefix | |
self.data_dir = hparams['binary_data_dir'] | |
self.is_infer = prefix == 'test' | |
self.batch_max_frames = 0 if self.is_infer else hparams['max_samples'] // hparams['hop_size'] | |
self.hop_size = hparams['hop_size'] | |
self.indexed_ds = None | |
self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') | |
self.avail_idxs = [idx for idx, s in enumerate(self.sizes) if s > self.batch_max_frames] | |
print(f"| {len(self.sizes) - len(self.avail_idxs)} short items are skipped in {prefix} set.") | |
self.sizes = [s for idx, s in enumerate(self.sizes) if s > self.batch_max_frames] | |
def _get_item(self, index): | |
if self.indexed_ds is None: | |
self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') | |
item = self.indexed_ds[index] | |
return item | |
def __getitem__(self, index): | |
index = self.avail_idxs[index] | |
item = self._get_item(index) | |
sample = { | |
"id": index, | |
"item_name": item['item_name'], | |
"mel": torch.FloatTensor(item['mel']), | |
"wav": torch.FloatTensor(item['wav'].astype(np.float32)), | |
"pitch": torch.LongTensor(item['pitch']), | |
"f0": torch.FloatTensor(item['f0']) | |
} | |
return sample | |
def collater(self, batch): | |
if len(batch) == 0: | |
return {} | |
y_batch, c_batch, p_batch, f0_batch = [], [], [], [] | |
item_name = [] | |
for idx in range(len(batch)): | |
item_name.append(batch[idx]['item_name']) | |
x, c = batch[idx]['wav'], batch[idx]['mel'] | |
p, f0 = batch[idx]['pitch'], batch[idx]['f0'] | |
self._assert_ready_for_upsampling(x, c, self.hop_size) | |
if len(c) > self.batch_max_frames: | |
# randomly pickup with the batch_max_steps length of the part | |
batch_max_frames = self.batch_max_frames if self.batch_max_frames != 0 else len(c) - 1 | |
batch_max_steps = batch_max_frames * self.hop_size | |
interval_start = 0 | |
interval_end = len(c) - batch_max_frames | |
start_frame = np.random.randint(interval_start, interval_end) | |
start_step = start_frame * self.hop_size | |
y = x[start_step: start_step + batch_max_steps] | |
c = c[start_frame: start_frame + batch_max_frames] | |
p = p[start_frame: start_frame + batch_max_frames] | |
f0 = f0[start_frame: start_frame + batch_max_frames] | |
self._assert_ready_for_upsampling(y, c, self.hop_size) | |
else: | |
print(f"Removed short sample from batch (length={len(x)}).") | |
continue | |
y_batch += [y.reshape(-1, 1)] # [(T, 1), (T, 1), ...] | |
c_batch += [c] # [(T' C), (T' C), ...] | |
p_batch += [p] # [(T' C), (T' C), ...] | |
f0_batch += [f0] # [(T' C), (T' C), ...] | |
# convert each batch to tensor, asuume that each item in batch has the same length | |
y_batch = collate_2d(y_batch, 0).transpose(2, 1) # (B, 1, T) | |
c_batch = collate_2d(c_batch, 0).transpose(2, 1) # (B, C, T') | |
p_batch = collate_1d(p_batch, 0) # (B, T') | |
f0_batch = collate_1d(f0_batch, 0) # (B, T') | |
# make input noise signal batch tensor | |
z_batch = torch.randn(y_batch.size()) # (B, 1, T) | |
return { | |
'z': z_batch, | |
'mels': c_batch, | |
'wavs': y_batch, | |
'pitches': p_batch, | |
'f0': f0_batch, | |
'item_name': item_name | |
} | |
def _assert_ready_for_upsampling(x, c, hop_size): | |
"""Assert the audio and feature lengths are correctly adjusted for upsamping.""" | |
assert len(x) == (len(c)) * hop_size | |