Spaces:
Runtime error
Runtime error
from torch import nn | |
from .espnet_positional_embedding import RelPositionalEncoding | |
from .espnet_transformer_attn import RelPositionMultiHeadedAttention | |
from .layers import Swish, ConvolutionModule, EncoderLayer, MultiLayeredConv1d | |
from ..layers import Embedding | |
class ConformerLayers(nn.Module): | |
def __init__(self, hidden_size, num_layers, kernel_size=9, dropout=0.0, num_heads=4, | |
use_last_norm=True, save_hidden=False): | |
super().__init__() | |
self.use_last_norm = use_last_norm | |
self.layers = nn.ModuleList() | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = (hidden_size, hidden_size * 4, 1, dropout) | |
self.pos_embed = RelPositionalEncoding(hidden_size, dropout) | |
self.encoder_layers = nn.ModuleList([EncoderLayer( | |
hidden_size, | |
RelPositionMultiHeadedAttention(num_heads, hidden_size, 0.0), | |
positionwise_layer(*positionwise_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
ConvolutionModule(hidden_size, kernel_size, Swish()), | |
dropout, | |
) for _ in range(num_layers)]) | |
if self.use_last_norm: | |
self.layer_norm = nn.LayerNorm(hidden_size) | |
else: | |
self.layer_norm = nn.Linear(hidden_size, hidden_size) | |
self.save_hidden = save_hidden | |
if save_hidden: | |
self.hiddens = [] | |
def forward(self, x, padding_mask=None): | |
""" | |
:param x: [B, T, H] | |
:param padding_mask: [B, T] | |
:return: [B, T, H] | |
""" | |
self.hiddens = [] | |
nonpadding_mask = x.abs().sum(-1) > 0 | |
x = self.pos_embed(x) | |
for l in self.encoder_layers: | |
x, mask = l(x, nonpadding_mask[:, None, :]) | |
if self.save_hidden: | |
self.hiddens.append(x[0]) | |
x = x[0] | |
x = self.layer_norm(x) * nonpadding_mask.float()[:, :, None] | |
return x | |
class ConformerEncoder(ConformerLayers): | |
def __init__(self, hidden_size, dict_size, num_layers=None): | |
conformer_enc_kernel_size = 9 | |
super().__init__(hidden_size, num_layers, conformer_enc_kernel_size) | |
self.embed = Embedding(dict_size, hidden_size, padding_idx=0) | |
def forward(self, x): | |
""" | |
:param src_tokens: [B, T] | |
:return: [B x T x C] | |
""" | |
x = self.embed(x) # [B, T, H] | |
x = super(ConformerEncoder, self).forward(x) | |
return x | |
class ConformerDecoder(ConformerLayers): | |
def __init__(self, hidden_size, num_layers): | |
conformer_dec_kernel_size = 9 | |
super().__init__(hidden_size, num_layers, conformer_dec_kernel_size) | |