RayeRen's picture
init
d1b91e7
raw
history blame
9.16 kB
from torch import nn
import torch
from modules.commons.layers import LayerNorm
class ConvolutionModule(nn.Module):
"""ConvolutionModule in Conformer model.
Args:
channels (int): The number of channels of conv layers.
kernel_size (int): Kernerl size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
"""Construct an ConvolutionModule object."""
super(ConvolutionModule, self).__init__()
# kernerl_size should be a odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1d(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.depthwise_conv = nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=channels,
bias=bias,
)
self.norm = nn.BatchNorm1d(channels)
self.pointwise_conv2 = nn.Conv1d(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias=bias,
)
self.activation = activation
def forward(self, x):
"""Compute convolution module.
Args:
x (torch.Tensor): Input tensor (#batch, time, channels).
Returns:
torch.Tensor: Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose(1, 2)
# GLU mechanism
x = self.pointwise_conv1(x) # (batch, 2*channel, dim)
x = nn.functional.glu(x, dim=1) # (batch, channel, dim)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
x = self.pointwise_conv2(x)
return x.transpose(1, 2)
class MultiLayeredConv1d(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed
to replace positionwise feed-forward network
in Transforner block, which is introduced in
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
"""Initialize MultiLayeredConv1d module.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
"""
super(MultiLayeredConv1d, self).__init__()
self.w_1 = torch.nn.Conv1d(
in_chans,
hidden_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.w_2 = torch.nn.Conv1d(
hidden_chans,
in_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x):
"""Calculate forward propagation.
Args:
x (torch.Tensor): Batch of input tensors (B, T, in_chans).
Returns:
torch.Tensor: Batch of output tensors (B, T, hidden_chans).
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
class Swish(torch.nn.Module):
"""Construct an Swish object."""
def forward(self, x):
"""Return Swich activation function."""
return x * torch.sigmoid(x)
class EncoderLayer(nn.Module):
"""Encoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module (torch.nn.Module): Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool): Whether to use layer_norm before the first block.
concat_after (bool): Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
size,
self_attn,
feed_forward,
feed_forward_macaron,
conv_module,
dropout_rate,
normalize_before=True,
concat_after=False,
):
"""Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = LayerNorm(size) # for the FNN module
self.norm_mha = LayerNorm(size) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = LayerNorm(size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = LayerNorm(size) # for the CNN module
self.norm_final = LayerNorm(size) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Args:
x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if pos_emb is not None:
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
else:
x_att = self.self_attn(x_q, x, x, mask)
if self.concat_after:
x_concat = torch.cat((x, x_att), dim=-1)
x = residual + self.concat_linear(x_concat)
else:
x = residual + self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask