Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from modules.commons.layers import LayerNorm | |
import torch.nn.functional as F | |
class DurationPredictor(torch.nn.Module): | |
def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0): | |
super(DurationPredictor, self).__init__() | |
self.offset = offset | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
for idx in range(n_layers): | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential( | |
torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=kernel_size // 2), | |
torch.nn.ReLU(), | |
LayerNorm(n_chans, dim=1), | |
torch.nn.Dropout(dropout_rate) | |
)] | |
self.linear = nn.Sequential(torch.nn.Linear(n_chans, 1), nn.Softplus()) | |
def forward(self, x, x_padding=None): | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
x = f(x) # (B, C, Tmax) | |
if x_padding is not None: | |
x = x * (1 - x_padding.float())[:, None, :] | |
x = self.linear(x.transpose(1, -1)) # [B, T, C] | |
x = x * (1 - x_padding.float())[:, :, None] # (B, T, C) | |
x = x[..., 0] # (B, Tmax) | |
return x | |
class LengthRegulator(torch.nn.Module): | |
def __init__(self, pad_value=0.0): | |
super(LengthRegulator, self).__init__() | |
self.pad_value = pad_value | |
def forward(self, dur, dur_padding=None, alpha=1.0): | |
""" | |
Example (no batch dim version): | |
1. dur = [2,2,3] | |
2. token_idx = [[1],[2],[3]], dur_cumsum = [2,4,7], dur_cumsum_prev = [0,2,4] | |
3. token_mask = [[1,1,0,0,0,0,0], | |
[0,0,1,1,0,0,0], | |
[0,0,0,0,1,1,1]] | |
4. token_idx * token_mask = [[1,1,0,0,0,0,0], | |
[0,0,2,2,0,0,0], | |
[0,0,0,0,3,3,3]] | |
5. (token_idx * token_mask).sum(0) = [1,1,2,2,3,3,3] | |
:param dur: Batch of durations of each frame (B, T_txt) | |
:param dur_padding: Batch of padding of each frame (B, T_txt) | |
:param alpha: duration rescale coefficient | |
:return: | |
mel2ph (B, T_speech) | |
assert alpha > 0 | |
""" | |
dur = torch.round(dur.float() * alpha).long() | |
if dur_padding is not None: | |
dur = dur * (1 - dur_padding.long()) | |
token_idx = torch.arange(1, dur.shape[1] + 1)[None, :, None].to(dur.device) | |
dur_cumsum = torch.cumsum(dur, 1) | |
dur_cumsum_prev = F.pad(dur_cumsum, [1, -1], mode='constant', value=0) | |
pos_idx = torch.arange(dur.sum(-1).max())[None, None].to(dur.device) | |
token_mask = (pos_idx >= dur_cumsum_prev[:, :, None]) & (pos_idx < dur_cumsum[:, :, None]) | |
mel2token = (token_idx * token_mask.long()).sum(1) | |
return mel2token | |
class PitchPredictor(torch.nn.Module): | |
def __init__(self, idim, n_layers=5, n_chans=384, odim=2, kernel_size=5, dropout_rate=0.1): | |
super(PitchPredictor, self).__init__() | |
self.conv = torch.nn.ModuleList() | |
self.kernel_size = kernel_size | |
for idx in range(n_layers): | |
in_chans = idim if idx == 0 else n_chans | |
self.conv += [torch.nn.Sequential( | |
torch.nn.Conv1d(in_chans, n_chans, kernel_size, padding=kernel_size // 2), | |
torch.nn.ReLU(), | |
LayerNorm(n_chans, dim=1), | |
torch.nn.Dropout(dropout_rate) | |
)] | |
self.linear = torch.nn.Linear(n_chans, odim) | |
def forward(self, x): | |
""" | |
:param x: [B, T, H] | |
:return: [B, T, H] | |
""" | |
x = x.transpose(1, -1) # (B, idim, Tmax) | |
for f in self.conv: | |
x = f(x) # (B, C, Tmax) | |
x = self.linear(x.transpose(1, -1)) # (B, Tmax, H) | |
return x | |
class EnergyPredictor(PitchPredictor): | |
pass | |