PortaSpeech / modules /tts /diffspeech /shallow_diffusion_tts.py
RayeRen's picture
update
53fa903
raw
history blame
11.8 kB
import math
import random
from functools import partial
from inspect import isfunction
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from modules.tts.fs2_orig import FastSpeech2Orig
from modules.tts.diffspeech.net import DiffNet
from modules.tts.commons.align_ops import expand_states
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
# gaussian diffusion trainer class
def extract(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=0.01):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
DIFF_DECODERS = {
'wavenet': lambda hp: DiffNet(hp),
}
class AuxModel(FastSpeech2Orig):
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None,
f0=None, uv=None, energy=None, infer=False, **kwargs):
ret = {}
encoder_out = self.encoder(txt_tokens) # [B, T, C]
src_nonpadding = (txt_tokens > 0).float()[:, :, None]
style_embed = self.forward_style_embed(spk_embed, spk_id)
# add dur
dur_inp = (encoder_out + style_embed) * src_nonpadding
mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret)
tgt_nonpadding = (mel2ph > 0).float()[:, :, None]
decoder_inp = decoder_inp_ = expand_states(encoder_out, mel2ph)
# add pitch and energy embed
if self.hparams['use_pitch_embed']:
pitch_inp = (decoder_inp_ + style_embed) * tgt_nonpadding
decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out)
# add pitch and energy embed
if self.hparams['use_energy_embed']:
energy_inp = (decoder_inp_ + style_embed) * tgt_nonpadding
decoder_inp = decoder_inp + self.forward_energy(energy_inp, energy, ret)
# decoder input
ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding
if self.hparams['dec_inp_add_noise']:
B, T, _ = decoder_inp.shape
z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device)
ret['adv_z'] = z
decoder_inp = torch.cat([decoder_inp, z], -1)
decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding
if kwargs['skip_decoder']:
return ret
ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs)
return ret
class GaussianDiffusion(nn.Module):
def __init__(self, dict_size, hparams, out_dims=None):
super().__init__()
self.hparams = hparams
out_dims = hparams['audio_num_mel_bins']
denoise_fn = DIFF_DECODERS[hparams['diff_decoder_type']](hparams)
timesteps = hparams['timesteps']
K_step = hparams['K_step']
loss_type = hparams['diff_loss_type']
spec_min = hparams['spec_min']
spec_max = hparams['spec_max']
self.denoise_fn = denoise_fn
self.fs2 = AuxModel(dict_size, hparams)
self.mel_bins = out_dims
if hparams['schedule_type'] == 'linear':
betas = linear_beta_schedule(timesteps, hparams['max_beta'])
else:
betas = cosine_beta_schedule(timesteps)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.K_step = K_step
self.loss_type = loss_type
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond, clip_denoised: bool):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None, nonpadding=None):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
if self.loss_type == 'l1':
if nonpadding is not None:
loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean()
else:
# print('are you sure w/o nonpadding?')
loss = (noise - x_recon).abs().mean()
elif self.loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
else:
raise NotImplementedError()
return loss
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None,
ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
b, *_, device = *txt_tokens.shape, txt_tokens.device
ret = self.fs2(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id,
f0=f0, uv=uv, energy=energy, infer=infer, skip_decoder=(not infer), **kwargs)
# (txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
# skip_decoder=(not infer), infer=infer, **kwargs)
cond = ret['decoder_inp'].transpose(1, 2)
if not infer:
t = torch.randint(0, self.K_step, (b,), device=device).long()
x = ref_mels
x = self.norm_spec(x)
x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
ret['diff_loss'] = self.p_losses(x, t, cond)
# nonpadding = (mel2ph != 0).float()
# ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding)
ret['mel_out'] = None
else:
ret['fs2_mel'] = ret['mel_out']
fs2_mels = ret['mel_out']
t = self.K_step
fs2_mels = self.norm_spec(fs2_mels)
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
if self.hparams.get('gaussian_start') is not None and self.hparams['gaussian_start']:
print('===> gaussian start.')
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
x = torch.randn(shape, device=device)
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x[:, 0].transpose(1, 2)
ret['mel_out'] = self.denorm_spec(x)
return ret
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph)
def out2mel(self, x):
return x