Spaces:
Runtime error
Runtime error
import matplotlib | |
matplotlib.use('Agg') | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
LINE_COLORS = ['w', 'r', 'orange', 'k', 'cyan', 'm', 'b', 'lime', 'g', 'brown', 'navy'] | |
def spec_to_figure(spec, vmin=None, vmax=None, title='', f0s=None, dur_info=None): | |
if isinstance(spec, torch.Tensor): | |
spec = spec.cpu().numpy() | |
H = spec.shape[1] // 2 | |
fig = plt.figure(figsize=(12, 6)) | |
plt.title(title) | |
plt.pcolor(spec.T, vmin=vmin, vmax=vmax) | |
if dur_info is not None: | |
assert isinstance(dur_info, dict) | |
txt = dur_info['txt'] | |
dur_gt = dur_info['dur_gt'] | |
if isinstance(dur_gt, torch.Tensor): | |
dur_gt = dur_gt.cpu().numpy() | |
dur_gt = np.cumsum(dur_gt).astype(int) | |
for i in range(len(dur_gt)): | |
shift = (i % 8) + 1 | |
plt.text(dur_gt[i], shift * 4, txt[i]) | |
plt.vlines(dur_gt[i], 0, H // 2, colors='b') # blue is gt | |
plt.xlim(0, dur_gt[-1]) | |
if 'dur_pred' in dur_info: | |
dur_pred = dur_info['dur_pred'] | |
if isinstance(dur_pred, torch.Tensor): | |
dur_pred = dur_pred.cpu().numpy() | |
dur_pred = np.cumsum(dur_pred).astype(int) | |
for i in range(len(dur_pred)): | |
shift = (i % 8) + 1 | |
plt.text(dur_pred[i], H + shift * 4, txt[i]) | |
plt.vlines(dur_pred[i], H, H * 1.5, colors='r') # red is pred | |
plt.xlim(0, max(dur_gt[-1], dur_pred[-1])) | |
if f0s is not None: | |
ax = plt.gca() | |
ax2 = ax.twinx() | |
if not isinstance(f0s, dict): | |
f0s = {'f0': f0s} | |
for i, (k, f0) in enumerate(f0s.items()): | |
if isinstance(f0, torch.Tensor): | |
f0 = f0.cpu().numpy() | |
ax2.plot(f0, label=k, c=LINE_COLORS[i], linewidth=1, alpha=0.5) | |
ax2.set_ylim(0, 1000) | |
ax2.legend() | |
return fig | |