Spaces:
Runtime error
Runtime error
import torch | |
import torch.distributed as dist | |
def reduce_tensors(metrics): | |
new_metrics = {} | |
for k, v in metrics.items(): | |
if isinstance(v, torch.Tensor): | |
dist.all_reduce(v) | |
v = v / dist.get_world_size() | |
if type(v) is dict: | |
v = reduce_tensors(v) | |
new_metrics[k] = v | |
return new_metrics | |
def tensors_to_scalars(tensors): | |
if isinstance(tensors, torch.Tensor): | |
tensors = tensors.item() | |
return tensors | |
elif isinstance(tensors, dict): | |
new_tensors = {} | |
for k, v in tensors.items(): | |
v = tensors_to_scalars(v) | |
new_tensors[k] = v | |
return new_tensors | |
elif isinstance(tensors, list): | |
return [tensors_to_scalars(v) for v in tensors] | |
else: | |
return tensors | |
def tensors_to_np(tensors): | |
if isinstance(tensors, dict): | |
new_np = {} | |
for k, v in tensors.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.cpu().numpy() | |
if type(v) is dict: | |
v = tensors_to_np(v) | |
new_np[k] = v | |
elif isinstance(tensors, list): | |
new_np = [] | |
for v in tensors: | |
if isinstance(v, torch.Tensor): | |
v = v.cpu().numpy() | |
if type(v) is dict: | |
v = tensors_to_np(v) | |
new_np.append(v) | |
elif isinstance(tensors, torch.Tensor): | |
v = tensors | |
if isinstance(v, torch.Tensor): | |
v = v.cpu().numpy() | |
if type(v) is dict: | |
v = tensors_to_np(v) | |
new_np = v | |
else: | |
raise Exception(f'tensors_to_np does not support type {type(tensors)}.') | |
return new_np | |
def move_to_cpu(tensors): | |
ret = {} | |
for k, v in tensors.items(): | |
if isinstance(v, torch.Tensor): | |
v = v.cpu() | |
if type(v) is dict: | |
v = move_to_cpu(v) | |
ret[k] = v | |
return ret | |
def move_to_cuda(batch, gpu_id=0): | |
# base case: object can be directly moved using `cuda` or `to` | |
if callable(getattr(batch, 'cuda', None)): | |
return batch.cuda(gpu_id, non_blocking=True) | |
elif callable(getattr(batch, 'to', None)): | |
return batch.to(torch.device('cuda', gpu_id), non_blocking=True) | |
elif isinstance(batch, list): | |
for i, x in enumerate(batch): | |
batch[i] = move_to_cuda(x, gpu_id) | |
return batch | |
elif isinstance(batch, tuple): | |
batch = list(batch) | |
for i, x in enumerate(batch): | |
batch[i] = move_to_cuda(x, gpu_id) | |
return tuple(batch) | |
elif isinstance(batch, dict): | |
for k, v in batch.items(): | |
batch[k] = move_to_cuda(v, gpu_id) | |
return batch | |
return batch | |