Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from modules.vocoder.hifigan.hifigan import HifiGanGenerator | |
from tasks.tts.dataset_utils import FastSpeechWordDataset | |
from tasks.tts.tts_utils import load_data_preprocessor | |
from utils.commons.ckpt_utils import load_ckpt | |
from utils.commons.hparams import set_hparams | |
class BaseTTSInfer: | |
def __init__(self, hparams, device=None): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.hparams = hparams | |
self.device = device | |
self.data_dir = hparams['binary_data_dir'] | |
self.preprocessor, self.preprocess_args = load_data_preprocessor() | |
self.ph_encoder, self.word_encoder = self.preprocessor.load_dict(self.data_dir) | |
self.spk_map = self.preprocessor.load_spk_map(self.data_dir) | |
self.ds_cls = FastSpeechWordDataset | |
self.model = self.build_model() | |
self.model.eval() | |
self.model.to(self.device) | |
self.vocoder = self.build_vocoder() | |
self.vocoder.eval() | |
self.vocoder.to(self.device) | |
def build_model(self): | |
raise NotImplementedError | |
def forward_model(self, inp): | |
raise NotImplementedError | |
def build_vocoder(self): | |
base_dir = self.hparams['vocoder_ckpt'] | |
config_path = f'{base_dir}/config.yaml' | |
config = set_hparams(config_path, global_hparams=False) | |
vocoder = HifiGanGenerator(config) | |
load_ckpt(vocoder, base_dir, 'model_gen') | |
return vocoder | |
def run_vocoder(self, c): | |
c = c.transpose(2, 1) | |
y = self.vocoder(c)[:, 0] | |
return y | |
def preprocess_input(self, inp): | |
""" | |
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)} | |
:return: | |
""" | |
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args | |
text_raw = inp['text'] | |
item_name = inp.get('item_name', '<ITEM_NAME>') | |
spk_name = inp.get('spk_name', '<SINGLE_SPK>') | |
ph, txt, word, ph2word, ph_gb_word = preprocessor.txt_to_ph( | |
preprocessor.txt_processor, text_raw, preprocess_args) | |
word_token = self.word_encoder.encode(word) | |
ph_token = self.ph_encoder.encode(ph) | |
spk_id = self.spk_map[spk_name] | |
item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id, | |
'ph_token': ph_token, 'word_token': word_token, 'ph2word': ph2word} | |
item['ph_len'] = len(item['ph_token']) | |
return item | |
def input_to_batch(self, item): | |
item_names = [item['item_name']] | |
text = [item['text']] | |
ph = [item['ph']] | |
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device) | |
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) | |
word_tokens = torch.LongTensor(item['word_token'])[None, :].to(self.device) | |
word_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device) | |
ph2word = torch.LongTensor(item['ph2word'])[None, :].to(self.device) | |
spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device) | |
batch = { | |
'item_name': item_names, | |
'text': text, | |
'ph': ph, | |
'txt_tokens': txt_tokens, | |
'txt_lengths': txt_lengths, | |
'word_tokens': word_tokens, | |
'word_lengths': word_lengths, | |
'ph2word': ph2word, | |
'spk_ids': spk_ids, | |
} | |
return batch | |
def postprocess_output(self, output): | |
return output | |
def infer_once(self, inp): | |
inp = self.preprocess_input(inp) | |
output = self.forward_model(inp) | |
output = self.postprocess_output(output) | |
return output | |
def example_run(cls): | |
from utils.commons.hparams import set_hparams | |
from utils.commons.hparams import hparams as hp | |
from utils.audio.io import save_wav | |
set_hparams() | |
inp = { | |
'text': 'the invention of movable metal letters in the middle of the fifteenth century may justly be considered as the invention of the art of printing.' | |
} | |
infer_ins = cls(hp) | |
out = infer_ins.infer_once(inp) | |
os.makedirs('infer_out', exist_ok=True) | |
save_wav(out, f'infer_out/example_out.wav', hp['audio_sample_rate']) | |