import librosa import numpy as np import torch import torch.nn.functional as F def _stft(y, hop_size, win_size, fft_size): return librosa.stft(y=y, n_fft=fft_size, hop_length=hop_size, win_length=win_size, pad_mode='constant') def _istft(y, hop_size, win_size): return librosa.istft(y, hop_length=hop_size, win_length=win_size) def griffin_lim(S, hop_size, win_size, fft_size, angles=None, n_iters=30): angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) if angles is None else angles S_complex = np.abs(S).astype(np.complex) y = _istft(S_complex * angles, hop_size, win_size) for i in range(n_iters): angles = np.exp(1j * np.angle(_stft(y, hop_size, win_size, fft_size))) y = _istft(S_complex * angles, hop_size, win_size) return y def istft(amp, ang, hop_size, win_size, fft_size, pad=False, window=None): spec = amp * torch.exp(1j * ang) spec_r = spec.real spec_i = spec.imag spec = torch.stack([spec_r, spec_i], -1) if window is None: window = torch.hann_window(win_size).to(amp.device) if pad: spec = F.pad(spec, [0, 0, 0, 1], mode='reflect') wav = torch.istft(spec, fft_size, hop_size, win_size) return wav def griffin_lim_torch(S, hop_size, win_size, fft_size, angles=None, n_iters=30): """ Examples: >>> x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size, win_length=win_length, pad_mode="constant") >>> x_stft = x_stft[None, ...] >>> amp = np.abs(x_stft) >>> angle_init = np.exp(2j * np.pi * np.random.rand(*x_stft.shape)) >>> amp = torch.FloatTensor(amp) >>> wav = griffin_lim_torch(amp, angle_init, hparams) :param amp: [B, n_fft, T] :param ang: [B, n_fft, T] :return: [B, T_wav] """ angles = torch.exp(2j * np.pi * torch.rand(*S.shape)) if angles is None else angles window = torch.hann_window(win_size).to(S.device) y = istft(S, angles, hop_size, win_size, fft_size, window=window) for i in range(n_iters): x_stft = torch.stft(y, fft_size, hop_size, win_size, window) x_stft = x_stft[..., 0] + 1j * x_stft[..., 1] angles = torch.angle(x_stft) y = istft(S, angles, hop_size, win_size, fft_size, window=window) return y # Conversions _mel_basis = None _inv_mel_basis = None def _build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): assert fmax <= audio_sample_rate // 2 return librosa.filters.mel(audio_sample_rate, fft_size, n_mels=audio_num_mel_bins, fmin=fmin, fmax=fmax) def _linear_to_mel(spectogram, audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax) return np.dot(_mel_basis, spectogram) def _mel_to_linear(mel_spectrogram, audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax): global _inv_mel_basis if _inv_mel_basis is None: _inv_mel_basis = np.linalg.pinv(_build_mel_basis(audio_sample_rate, fft_size, audio_num_mel_bins, fmin, fmax)) return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))