import torch def get_focus_rate(attn, src_padding_mask=None, tgt_padding_mask=None): ''' attn: bs x L_t x L_s ''' if src_padding_mask is not None: attn = attn * (1 - src_padding_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] focus_rate = attn.max(-1).values.sum(-1) focus_rate = focus_rate / attn.sum(-1).sum(-1) return focus_rate def get_phone_coverage_rate(attn, src_padding_mask=None, src_seg_mask=None, tgt_padding_mask=None): ''' attn: bs x L_t x L_s ''' src_mask = attn.new(attn.size(0), attn.size(-1)).bool().fill_(False) if src_padding_mask is not None: src_mask |= src_padding_mask if src_seg_mask is not None: src_mask |= src_seg_mask attn = attn * (1 - src_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] phone_coverage_rate = attn.max(1).values.sum(-1) # phone_coverage_rate = phone_coverage_rate / attn.sum(-1).sum(-1) phone_coverage_rate = phone_coverage_rate / (1 - src_mask.float()).sum(-1) return phone_coverage_rate def get_diagonal_focus_rate(attn, attn_ks, target_len, src_padding_mask=None, tgt_padding_mask=None, band_mask_factor=5, band_width=50): ''' attn: bx x L_t x L_s attn_ks: shape: tensor with shape [batch_size], input_lens/output_lens diagonal: y=k*x (k=attn_ks, x:output, y:input) 1 0 0 0 1 0 0 0 1 y>=k*(x-width) and y<=k*(x+width):1 else:0 ''' # width = min(target_len/band_mask_factor, 50) width1 = target_len / band_mask_factor width2 = target_len.new(target_len.size()).fill_(band_width) width = torch.where(width1 < width2, width1, width2).float() base = torch.ones(attn.size()).to(attn.device) zero = torch.zeros(attn.size()).to(attn.device) x = torch.arange(0, attn.size(1)).to(attn.device)[None, :, None].float() * base y = torch.arange(0, attn.size(2)).to(attn.device)[None, None, :].float() * base cond = (y - attn_ks[:, None, None] * x) cond1 = cond + attn_ks[:, None, None] * width[:, None, None] cond2 = cond - attn_ks[:, None, None] * width[:, None, None] mask1 = torch.where(cond1 < 0, zero, base) mask2 = torch.where(cond2 > 0, zero, base) mask = mask1 * mask2 if src_padding_mask is not None: attn = attn * (1 - src_padding_mask.float())[:, None, :] if tgt_padding_mask is not None: attn = attn * (1 - tgt_padding_mask.float())[:, :, None] diagonal_attn = attn * mask diagonal_focus_rate = diagonal_attn.sum(-1).sum(-1) / attn.sum(-1).sum(-1) return diagonal_focus_rate, mask