import torch from modules.tts.diffspeech.shallow_diffusion_tts import GaussianDiffusion from tasks.tts.fs2_orig import FastSpeech2OrigTask import utils from utils.commons.hparams import hparams from utils.commons.ckpt_utils import load_ckpt from utils.audio.pitch.utils import denorm_f0 class DiffSpeechTask(FastSpeech2OrigTask): def build_tts_model(self): # get min and max # import torch # from tqdm import tqdm # v_min = torch.ones([80]) * 100 # v_max = torch.ones([80]) * -100 # for i, ds in enumerate(tqdm(self.dataset_cls('train'))): # v_max = torch.max(torch.max(ds['mel'].reshape(-1, 80), 0)[0], v_max) # v_min = torch.min(torch.min(ds['mel'].reshape(-1, 80), 0)[0], v_min) # if i % 100 == 0: # print(i, v_min, v_max) # print('final', v_min, v_max) dict_size = len(self.token_encoder) self.model = GaussianDiffusion(dict_size, hparams) if hparams['fs2_ckpt'] != '': load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) for k, v in self.model.fs2.named_parameters(): if 'predictor' not in k: v.requires_grad = False # or # for k, v in self.model.fs2.named_parameters(): # v.requires_grad = False def build_optimizer(self, model): self.optimizer = optimizer = torch.optim.AdamW( filter(lambda p: p.requires_grad, model.parameters()), lr=hparams['lr'], betas=(hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2']), weight_decay=hparams['weight_decay']) return optimizer def build_scheduler(self, optimizer): return torch.optim.lr_scheduler.StepLR(optimizer, hparams['decay_steps'], gamma=0.5) def run_model(self, sample, infer=False, *args, **kwargs): txt_tokens = sample['txt_tokens'] # [B, T_t] spk_embed = sample.get('spk_embed') spk_id = sample.get('spk_ids') if not infer: target = sample['mels'] # [B, T_s, 80] mel2ph = sample['mel2ph'] # [B, T_s] f0 = sample.get('f0') uv = sample.get('uv') output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, ref_mels=target, f0=f0, uv=uv, infer=False) losses = {} if 'diff_loss' in output: losses['mel'] = output['diff_loss'] self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) if hparams['use_pitch_embed']: self.add_pitch_loss(output, sample, losses) return losses, output else: use_gt_dur = kwargs.get('infer_use_gt_dur', hparams['use_gt_dur']) use_gt_f0 = kwargs.get('infer_use_gt_f0', hparams['use_gt_f0']) mel2ph, uv, f0 = None, None, None if use_gt_dur: mel2ph = sample['mel2ph'] if use_gt_f0: f0 = sample['f0'] uv = sample['uv'] output = self.model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, ref_mels=None, f0=f0, uv=uv, infer=True) return output def save_valid_result(self, sample, batch_idx, model_out): sr = hparams['audio_sample_rate'] f0_gt = None # mel_out = model_out['mel_out'] if sample.get('f0') is not None: f0_gt = denorm_f0(sample['f0'][0].cpu(), sample['uv'][0].cpu()) # self.plot_mel(batch_idx, sample['mels'], mel_out, f0s=f0_gt) if self.global_step > 0: # wav_pred = self.vocoder.spec2wav(mel_out[0].cpu(), f0=f0_gt) # self.logger.add_audio(f'wav_val_{batch_idx}', wav_pred, self.global_step, sr) # with gt duration model_out = self.run_model(sample, infer=True, infer_use_gt_dur=True) dur_info = self.get_plot_dur_info(sample, model_out) del dur_info['dur_pred'] wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_gdur_{batch_idx}', wav_pred, self.global_step, sr) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'diffmel_gdur_{batch_idx}', dur_info=dur_info, f0s=f0_gt) self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'][0], f'fs2mel_gdur_{batch_idx}', dur_info=dur_info, f0s=f0_gt) # gt mel vs. fs2 mel # with pred duration if not hparams['use_gt_dur']: model_out = self.run_model(sample, infer=True, infer_use_gt_dur=False) dur_info = self.get_plot_dur_info(sample, model_out) self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'][0], f'mel_pdur_{batch_idx}', dur_info=dur_info, f0s=f0_gt) wav_pred = self.vocoder.spec2wav(model_out['mel_out'][0].cpu(), f0=f0_gt) self.logger.add_audio(f'wav_pdur_{batch_idx}', wav_pred, self.global_step, sr) # gt wav if self.global_step <= hparams['valid_infer_interval']: mel_gt = sample['mels'][0].cpu() wav_gt = self.vocoder.spec2wav(mel_gt, f0=f0_gt) self.logger.add_audio(f'wav_gt_{batch_idx}', wav_gt, self.global_step, sr)