#### \[EN\] Upload guide (`jsonl`) **Basic Requirements** * Upload one `jsonl` file per model (e.g., five files to compare five LLMs) * ⚠️ Important: All `jsonl` files must have the same number of rows * ⚠️ Important: The `model_id` field must be unique within and across all files **Required Fields** * Per Model Fields * `model_id`: Unique identifier for the model (recommendation: keep it short) * `generated`: The LLM's response to the test instruction * Required only for Translation (`translation_pair` prompt need those. See `streamlit_app_local/user_submit/mt/llama5.jsonl`) * `source_lang`: input language (e.g. Korean, KR, kor, ...) * `target_lang`: output language (e.g. English, EN, ...) * Common Fields (Must be identical across all files) * `instruction`: The input prompt or test instruction given to the model * `task`: Category label used to group results (useful when using different evaluation prompts per task) **Example Format** ```python # model1.jsonl {"model_id": "model1", "task": "directions", "instruction": "Where should I go?", "generated": "Over there"} {"model_id": "model1", "task": "arithmetic", "instruction": "1+1", "generated": "2"} # model2.jsonl {"model_id": "model2", "task": "directions", "instruction": "Where should I go?", "generated": "Head north"} {"model_id": "model2", "task": "arithmetic", "instruction": "1+1", "generated": "3"} ... .. . ``` **Use Case Example** If you want to compare different prompting strategies for the same model: * Use the same `instruction` across files (using unified test scenarios). * `generated` responses of each prompting strategy will vary across the files. * Use descriptive `model_id` values like "prompt1", "prompt2", etc.