|
|
|
|
|
import openai
|
|
import gradio as gr
|
|
|
|
from os import getenv
|
|
from typing import Any, Dict, Generator, List
|
|
|
|
from huggingface_hub import InferenceClient
|
|
from transformers import AutoTokenizer
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
|
|
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
|
|
|
temperature = 0.5
|
|
top_p = 0.7
|
|
repetition_penalty = 1.2
|
|
|
|
OPENAI_KEY = getenv("OPENAI_API_KEY")
|
|
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_client = InferenceClient(
|
|
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
token=HF_TOKEN
|
|
)
|
|
def format_prompt(message: str, api_kind: str):
|
|
"""
|
|
Formats the given message using a chat template.
|
|
|
|
Args:
|
|
message (str): The user message to be formatted.
|
|
|
|
Returns:
|
|
str: Formatted message after applying the chat template.
|
|
"""
|
|
|
|
|
|
messages: List[Dict[str, Any]] = [{'role': 'user', 'content': message}]
|
|
|
|
if api_kind == "openai":
|
|
return messages
|
|
elif api_kind == "hf":
|
|
return tokenizer.apply_chat_template(messages, tokenize=False)
|
|
elif api_kind:
|
|
raise ValueError("API is not supported")
|
|
|
|
|
|
def generate_hf(prompt: str, history: str, temperature: float = 0.5, max_new_tokens: int = 4000,
|
|
top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]:
|
|
"""
|
|
Generate a sequence of tokens based on a given prompt and history using Mistral client.
|
|
|
|
Args:
|
|
prompt (str): The initial prompt for the text generation.
|
|
history (str): Context or history for the text generation.
|
|
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
|
|
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
|
|
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
|
|
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
|
|
|
|
Returns:
|
|
Generator[str, None, str]: A generator yielding chunks of generated text.
|
|
Returns a final string if an error occurs.
|
|
"""
|
|
|
|
temperature = max(float(temperature), 1e-2)
|
|
top_p = float(top_p)
|
|
|
|
generate_kwargs = {
|
|
'temperature': temperature,
|
|
'max_new_tokens': max_new_tokens,
|
|
'top_p': top_p,
|
|
'repetition_penalty': repetition_penalty,
|
|
'do_sample': True,
|
|
'seed': 42,
|
|
}
|
|
|
|
formatted_prompt = format_prompt(prompt, "hf")
|
|
|
|
try:
|
|
stream = hf_client.text_generation(formatted_prompt, **generate_kwargs,
|
|
stream=True, details=True, return_full_text=False)
|
|
output = ""
|
|
for response in stream:
|
|
output += response.token.text
|
|
yield output
|
|
|
|
except Exception as e:
|
|
if "Too Many Requests" in str(e):
|
|
print("ERROR: Too many requests on Mistral client")
|
|
gr.Warning("Unfortunately Mistral is unable to process")
|
|
return "Unfortunately, I am not able to process your request now."
|
|
elif "Authorization header is invalid" in str(e):
|
|
print("Authetification error:", str(e))
|
|
gr.Warning("Authentication error: HF token was either not provided or incorrect")
|
|
return "Authentication error"
|
|
else:
|
|
print("Unhandled Exception:", str(e))
|
|
gr.Warning("Unfortunately Mistral is unable to process")
|
|
return "I do not know what happened, but I couldn't understand you."
|
|
|
|
|
|
def generate_openai(prompt: str, history: str, temperature: float = 0.9, max_new_tokens: int = 256,
|
|
top_p: float = 0.95, repetition_penalty: float = 1.0) -> Generator[str, None, str]:
|
|
"""
|
|
Generate a sequence of tokens based on a given prompt and history using Mistral client.
|
|
|
|
Args:
|
|
prompt (str): The initial prompt for the text generation.
|
|
history (str): Context or history for the text generation.
|
|
temperature (float, optional): The softmax temperature for sampling. Defaults to 0.9.
|
|
max_new_tokens (int, optional): Maximum number of tokens to be generated. Defaults to 256.
|
|
top_p (float, optional): Nucleus sampling probability. Defaults to 0.95.
|
|
repetition_penalty (float, optional): Penalty for repeated tokens. Defaults to 1.0.
|
|
|
|
Returns:
|
|
Generator[str, None, str]: A generator yielding chunks of generated text.
|
|
Returns a final string if an error occurs.
|
|
"""
|
|
|
|
temperature = max(float(temperature), 1e-2)
|
|
top_p = float(top_p)
|
|
|
|
generate_kwargs = {
|
|
'temperature': temperature,
|
|
'max_tokens': max_new_tokens,
|
|
'top_p': top_p,
|
|
'frequency_penalty': max(-2., min(repetition_penalty, 2.)),
|
|
}
|
|
|
|
formatted_prompt = format_prompt(prompt, "openai")
|
|
|
|
try:
|
|
stream = openai.ChatCompletion.create(model="gpt-3.5-turbo-0301",
|
|
messages=formatted_prompt,
|
|
**generate_kwargs,
|
|
stream=True)
|
|
output = ""
|
|
for chunk in stream:
|
|
output += chunk.choices[0].delta.get("content", "")
|
|
yield output
|
|
|
|
except Exception as e:
|
|
if "Too Many Requests" in str(e):
|
|
print("ERROR: Too many requests on OpenAI client")
|
|
gr.Warning("Unfortunately OpenAI is unable to process")
|
|
return "Unfortunately, I am not able to process your request now."
|
|
elif "You didn't provide an API key" in str(e):
|
|
print("Authetification error:", str(e))
|
|
gr.Warning("Authentication error: OpenAI key was either not provided or incorrect")
|
|
return "Authentication error"
|
|
else:
|
|
print("Unhandled Exception:", str(e))
|
|
gr.Warning("Unfortunately OpenAI is unable to process")
|
|
return "I do not know what happened, but I couldn't understand you."
|
|
|