NCTCMumbai
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -156,7 +156,8 @@ def bot(history, cross_encoder):
|
|
156 |
# Create a new history entry instead of modifying the tuple directly
|
157 |
new_history = history[:-1] + [ (query, "") ]
|
158 |
for character in generate_fn(prompt, history[:-1]):
|
159 |
-
new_history[-1] = (query, character)
|
|
|
160 |
yield new_history, prompt_html
|
161 |
# history[-1][1] = ""
|
162 |
# for character in generate_fn(prompt, history[:-1]):
|
@@ -196,34 +197,7 @@ def translate_text(selected_language,history):
|
|
196 |
response_text = history[-1][1] if history else ''
|
197 |
translation = bhashini_translate(response_text, to_code=to_code)
|
198 |
return translation['translated_content']
|
199 |
-
|
200 |
-
# "Hindi": "hi",
|
201 |
-
# "Gom": "gom",
|
202 |
-
# "Kannada": "kn",
|
203 |
-
# "Dogri": "doi",
|
204 |
-
# "Bodo": "brx",
|
205 |
-
# "Urdu": "ur",
|
206 |
-
# "Tamil": "ta",
|
207 |
-
# "Kashmiri": "ks",
|
208 |
-
# "Assamese": "as",
|
209 |
-
# "Bengali": "bn",
|
210 |
-
# "Marathi": "mr",
|
211 |
-
# "Sindhi": "sd",
|
212 |
-
# "Maithili": "mai",
|
213 |
-
# "Punjabi": "pa",
|
214 |
-
# "Malayalam": "ml",
|
215 |
-
# "Manipuri": "mni",
|
216 |
-
# "Telugu": "te",
|
217 |
-
# "Sanskrit": "sa",
|
218 |
-
# "Nepali": "ne",
|
219 |
-
# "Santali": "sat",
|
220 |
-
# "Gujarati": "gu",
|
221 |
-
# "Odia": "or"
|
222 |
-
# }
|
223 |
-
|
224 |
-
# to_code = iso_language_codes[selected_language]
|
225 |
-
# translation = bhashini_translate(response_text, to_code=to_code)
|
226 |
-
# return translation['translated_content']
|
227 |
|
228 |
# Gradio interface
|
229 |
with gr.Blocks(theme='gradio/soft') as CHATBOT:
|
@@ -310,346 +284,3 @@ with gr.Blocks(theme='gradio/soft') as CHATBOT:
|
|
310 |
# Launch the Gradio application
|
311 |
CHATBOT.launch(share=True)
|
312 |
|
313 |
-
# from ragatouille import RAGPretrainedModel
|
314 |
-
# import subprocess
|
315 |
-
# import json
|
316 |
-
# import spaces
|
317 |
-
# import firebase_admin
|
318 |
-
# from firebase_admin import credentials, firestore
|
319 |
-
# import logging
|
320 |
-
# from pathlib import Path
|
321 |
-
# from time import perf_counter
|
322 |
-
# from datetime import datetime
|
323 |
-
# import gradio as gr
|
324 |
-
# from jinja2 import Environment, FileSystemLoader
|
325 |
-
# import numpy as np
|
326 |
-
# from sentence_transformers import CrossEncoder
|
327 |
-
# from huggingface_hub import InferenceClient
|
328 |
-
# from os import getenv
|
329 |
-
|
330 |
-
# from backend.query_llm import generate_hf, generate_openai
|
331 |
-
# from backend.semantic_search import table, retriever
|
332 |
-
# from huggingface_hub import InferenceClient
|
333 |
-
|
334 |
-
|
335 |
-
# VECTOR_COLUMN_NAME = "vector"
|
336 |
-
# TEXT_COLUMN_NAME = "text"
|
337 |
-
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
|
338 |
-
# proj_dir = Path(__file__).parent
|
339 |
-
# # Setting up the logging
|
340 |
-
# logging.basicConfig(level=logging.INFO)
|
341 |
-
# logger = logging.getLogger(__name__)
|
342 |
-
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
|
343 |
-
# # Set up the template environment with the templates directory
|
344 |
-
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
|
345 |
-
|
346 |
-
# # Load the templates directly from the environment
|
347 |
-
# template = env.get_template('template.j2')
|
348 |
-
# template_html = env.get_template('template_html.j2')
|
349 |
-
|
350 |
-
|
351 |
-
# def add_text(history, text):
|
352 |
-
# history = [] if history is None else history
|
353 |
-
# history = history + [(text, None)]
|
354 |
-
# return history, gr.Textbox(value="", interactive=False)
|
355 |
-
|
356 |
-
|
357 |
-
# def bot(history, cross_encoder):
|
358 |
-
# top_rerank = 25
|
359 |
-
# top_k_rank = 20
|
360 |
-
# query = history[-1][0]
|
361 |
-
|
362 |
-
# if not query:
|
363 |
-
# gr.Warning("Please submit a non-empty string as a prompt")
|
364 |
-
# raise ValueError("Empty string was submitted")
|
365 |
-
|
366 |
-
# logger.warning('Retrieving documents...')
|
367 |
-
|
368 |
-
# # if COLBERT RAGATATOUILLE PROCEDURE :
|
369 |
-
# if cross_encoder=='(HIGH ACCURATE) ColBERT':
|
370 |
-
# gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
|
371 |
-
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
372 |
-
# RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
373 |
-
# documents_full=RAG_db.search(query,k=top_k_rank)
|
374 |
-
|
375 |
-
# documents=[item['content'] for item in documents_full]
|
376 |
-
# # Create Prompt
|
377 |
-
# prompt = template.render(documents=documents, query=query)
|
378 |
-
# prompt_html = template_html.render(documents=documents, query=query)
|
379 |
-
|
380 |
-
# generate_fn = generate_hf
|
381 |
-
|
382 |
-
# history[-1][1] = ""
|
383 |
-
# for character in generate_fn(prompt, history[:-1]):
|
384 |
-
# history[-1][1] = character
|
385 |
-
# yield history, prompt_html
|
386 |
-
# print('Final history is ',history)
|
387 |
-
# #store_message(db,history[-1][0],history[-1][1],cross_encoder)
|
388 |
-
# else:
|
389 |
-
# # Retrieve documents relevant to query
|
390 |
-
# document_start = perf_counter()
|
391 |
-
|
392 |
-
# query_vec = retriever.encode(query)
|
393 |
-
# logger.warning(f'Finished query vec')
|
394 |
-
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
# logger.warning(f'Finished search')
|
399 |
-
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
|
400 |
-
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
|
401 |
-
# logger.warning(f'start cross encoder {len(documents)}')
|
402 |
-
# # Retrieve documents relevant to query
|
403 |
-
# query_doc_pair = [[query, doc] for doc in documents]
|
404 |
-
# if cross_encoder=='(FAST) MiniLM-L6v2' :
|
405 |
-
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
406 |
-
# elif cross_encoder=='(ACCURATE) BGE reranker':
|
407 |
-
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
|
408 |
-
|
409 |
-
# cross_scores = cross_encoder1.predict(query_doc_pair)
|
410 |
-
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
|
411 |
-
# logger.warning(f'Finished cross encoder {len(documents)}')
|
412 |
-
|
413 |
-
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
|
414 |
-
# logger.warning(f'num documents {len(documents)}')
|
415 |
-
|
416 |
-
# document_time = perf_counter() - document_start
|
417 |
-
# logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
|
418 |
-
|
419 |
-
# # Create Prompt
|
420 |
-
# prompt = template.render(documents=documents, query=query)
|
421 |
-
# prompt_html = template_html.render(documents=documents, query=query)
|
422 |
-
|
423 |
-
# generate_fn = generate_hf
|
424 |
-
|
425 |
-
# history[-1][1] = ""
|
426 |
-
# for character in generate_fn(prompt, history[:-1]):
|
427 |
-
# history[-1][1] = character
|
428 |
-
# yield history, prompt_html
|
429 |
-
# print('Final history is ',history)
|
430 |
-
# #store_message(db,history[-1][0],history[-1][1],cross_encoder)
|
431 |
-
|
432 |
-
# # def system_instructions(question_difficulty, topic,documents_str):
|
433 |
-
# # return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""
|
434 |
-
|
435 |
-
# RAG_db = gr.State()
|
436 |
-
|
437 |
-
# # def load_model():
|
438 |
-
# # try:
|
439 |
-
# # # Initialize the model
|
440 |
-
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
441 |
-
# # # Load the RAG database
|
442 |
-
# # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
443 |
-
# # return 'Ready to Go!!'
|
444 |
-
# # except Exception as e:
|
445 |
-
# # return f"Error loading model: {e}"
|
446 |
-
|
447 |
-
|
448 |
-
# # def generate_quiz(question_difficulty, topic):
|
449 |
-
# # if not topic.strip():
|
450 |
-
# # return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)]
|
451 |
-
|
452 |
-
# # top_k_rank = 10
|
453 |
-
# # # Load the model and database within the generate_quiz function
|
454 |
-
# # try:
|
455 |
-
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
|
456 |
-
# # RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
|
457 |
-
# # gr.Warning('Model loaded!')
|
458 |
-
# # except Exception as e:
|
459 |
-
# # return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)]
|
460 |
-
|
461 |
-
# # RAG_db_ = RAG_db.value
|
462 |
-
# # documents_full = RAG_db_.search(topic, k=top_k_rank)
|
463 |
-
|
464 |
-
# # generate_kwargs = dict(
|
465 |
-
# # temperature=0.2,
|
466 |
-
# # max_new_tokens=4000,
|
467 |
-
# # top_p=0.95,
|
468 |
-
# # repetition_penalty=1.0,
|
469 |
-
# # do_sample=True,
|
470 |
-
# # seed=42,
|
471 |
-
# # )
|
472 |
-
|
473 |
-
# # question_radio_list = []
|
474 |
-
# # count = 0
|
475 |
-
# # while count <= 3:
|
476 |
-
# # try:
|
477 |
-
# # documents = [item['content'] for item in documents_full]
|
478 |
-
# # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
|
479 |
-
# # documents_str = '\n'.join(document_summaries)
|
480 |
-
# # formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
|
481 |
-
|
482 |
-
# # pre_prompt = [
|
483 |
-
# # {"role": "system", "content": formatted_prompt}
|
484 |
-
# # ]
|
485 |
-
# # response = client.text_generation(
|
486 |
-
# # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
|
487 |
-
# # )
|
488 |
-
# # output_json = json.loads(f"{response}")
|
489 |
-
|
490 |
-
# # global quiz_data
|
491 |
-
# # quiz_data = output_json
|
492 |
-
|
493 |
-
# # for question_num in range(1, 11):
|
494 |
-
# # question_key = f"Q{question_num}"
|
495 |
-
# # answer_key = f"A{question_num}"
|
496 |
-
# # question = quiz_data.get(question_key)
|
497 |
-
# # answer = quiz_data.get(quiz_data.get(answer_key))
|
498 |
-
|
499 |
-
# # if not question or not answer:
|
500 |
-
# # continue
|
501 |
-
|
502 |
-
# # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
|
503 |
-
# # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
|
504 |
-
|
505 |
-
# # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
|
506 |
-
# # question_radio_list.append(radio)
|
507 |
-
|
508 |
-
# # if len(question_radio_list) == 10:
|
509 |
-
# # break
|
510 |
-
# # else:
|
511 |
-
# # count += 1
|
512 |
-
# # continue
|
513 |
-
# # except Exception as e:
|
514 |
-
# # count += 1
|
515 |
-
# # if count == 3:
|
516 |
-
# # return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)]
|
517 |
-
# # continue
|
518 |
-
|
519 |
-
# # return ['Quiz Generated!'] + question_radio_list
|
520 |
-
|
521 |
-
# # def compare_answers(*user_answers):
|
522 |
-
# # user_answer_list = user_answers
|
523 |
-
# # answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)]
|
524 |
-
|
525 |
-
# # score = sum(1 for answer in user_answer_list if answer in answers_list)
|
526 |
-
|
527 |
-
# # if score > 7:
|
528 |
-
# # message = f"### Excellent! You got {score} out of 10!"
|
529 |
-
# # elif score > 5:
|
530 |
-
# # message = f"### Good! You got {score} out of 10!"
|
531 |
-
# # else:
|
532 |
-
# # message = f"### You got {score} out of 10! Don’t worry, you can prepare well and try better next time!"
|
533 |
-
|
534 |
-
# # return message
|
535 |
-
|
536 |
-
# #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
|
537 |
-
# with gr.Blocks(theme='NoCrypt/miku') as CHATBOT:
|
538 |
-
# with gr.Row():
|
539 |
-
# with gr.Column(scale=10):
|
540 |
-
# # gr.Markdown(
|
541 |
-
# # """
|
542 |
-
# # # Theme preview: `paris`
|
543 |
-
# # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`.
|
544 |
-
# # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version
|
545 |
-
# # of this theme.
|
546 |
-
# # """
|
547 |
-
# # )
|
548 |
-
# gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1>
|
549 |
-
# </div>""", elem_id='heading')
|
550 |
-
|
551 |
-
# gr.HTML(value=f"""
|
552 |
-
# <p style="font-family: sans-serif; font-size: 16px;">
|
553 |
-
# Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers
|
554 |
-
# </p>
|
555 |
-
# """, elem_id='Sub-heading')
|
556 |
-
# #usage_count = get_and_increment_value_count(db,collection_name, field_name)
|
557 |
-
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai . Suggestions may be sent to <a href="mailto:nctc-admin@gov.in" style="color: #00008B; font-style: italic;">ramyadevi1607@yahoo.com</a>.</p>""", elem_id='Sub-heading1 ')
|
558 |
-
|
559 |
-
# with gr.Column(scale=3):
|
560 |
-
# gr.Image(value='logo.png',height=200,width=200)
|
561 |
-
|
562 |
-
|
563 |
-
# chatbot = gr.Chatbot(
|
564 |
-
# [],
|
565 |
-
# elem_id="chatbot",
|
566 |
-
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
567 |
-
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
568 |
-
# bubble_full_width=False,
|
569 |
-
# show_copy_button=True,
|
570 |
-
# show_share_button=True,
|
571 |
-
# )
|
572 |
-
|
573 |
-
# with gr.Row():
|
574 |
-
# txt = gr.Textbox(
|
575 |
-
# scale=3,
|
576 |
-
# show_label=False,
|
577 |
-
# placeholder="Enter text and press enter",
|
578 |
-
# container=False,
|
579 |
-
# )
|
580 |
-
# txt_btn = gr.Button(value="Submit text", scale=1)
|
581 |
-
|
582 |
-
# cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")
|
583 |
-
|
584 |
-
# prompt_html = gr.HTML()
|
585 |
-
# # Turn off interactivity while generating if you click
|
586 |
-
# txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
587 |
-
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])
|
588 |
-
|
589 |
-
# # Turn it back on
|
590 |
-
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
591 |
-
|
592 |
-
# # Turn off interactivity while generating if you hit enter
|
593 |
-
# txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
594 |
-
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])
|
595 |
-
|
596 |
-
# # Turn it back on
|
597 |
-
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
598 |
-
|
599 |
-
# # Examples
|
600 |
-
# gr.Examples(examples, txt)
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
# # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
|
606 |
-
# # with gr.Column(scale=4):
|
607 |
-
# # gr.HTML("""
|
608 |
-
# # <center>
|
609 |
-
# # <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
|
610 |
-
# # <h2>Generative AI-powered Capacity building for Training Officers</h2>
|
611 |
-
# # <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! ⚠️</i>
|
612 |
-
# # </center>
|
613 |
-
# # """)
|
614 |
-
|
615 |
-
# # with gr.Column(scale=2):
|
616 |
-
# # gr.HTML("""
|
617 |
-
# # <center>
|
618 |
-
|
619 |
-
# # <h2>Ready!</h2>
|
620 |
-
|
621 |
-
# # </center>
|
622 |
-
# # """)
|
623 |
-
# # # load_btn = gr.Button("Click to Load!🚀")
|
624 |
-
# # # load_text = gr.Textbox()
|
625 |
-
# # # load_btn.click(fn=load_model, outputs=load_text)
|
626 |
-
|
627 |
-
# # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
|
628 |
-
|
629 |
-
# # with gr.Row():
|
630 |
-
# # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
|
631 |
-
|
632 |
-
# # generate_quiz_btn = gr.Button("Generate Quiz!🚀")
|
633 |
-
# # quiz_msg = gr.Textbox()
|
634 |
-
|
635 |
-
# # question_radios = [gr.Radio(visible=False) for _ in range(10)]
|
636 |
-
|
637 |
-
# # generate_quiz_btn.click(
|
638 |
-
# # fn=generate_quiz,
|
639 |
-
# # inputs=[radio, topic],
|
640 |
-
# # outputs=[quiz_msg] + question_radios
|
641 |
-
# # )
|
642 |
-
|
643 |
-
# # check_button = gr.Button("Check Score")
|
644 |
-
# # score_textbox = gr.Markdown()
|
645 |
-
|
646 |
-
# # check_button.click(
|
647 |
-
# # fn=compare_answers,
|
648 |
-
# # inputs=question_radios,
|
649 |
-
# # outputs=score_textbox
|
650 |
-
# # )
|
651 |
-
|
652 |
-
# #demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"])
|
653 |
-
# CHATBOT.queue()
|
654 |
-
# CHATBOT.launch(debug=True)
|
655 |
-
|
|
|
156 |
# Create a new history entry instead of modifying the tuple directly
|
157 |
new_history = history[:-1] + [ (query, "") ]
|
158 |
for character in generate_fn(prompt, history[:-1]):
|
159 |
+
new_history[-1] = (query, character)
|
160 |
+
print('Character',character)# Update the last tuple with new text
|
161 |
yield new_history, prompt_html
|
162 |
# history[-1][1] = ""
|
163 |
# for character in generate_fn(prompt, history[:-1]):
|
|
|
197 |
response_text = history[-1][1] if history else ''
|
198 |
translation = bhashini_translate(response_text, to_code=to_code)
|
199 |
return translation['translated_content']
|
200 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# Gradio interface
|
203 |
with gr.Blocks(theme='gradio/soft') as CHATBOT:
|
|
|
284 |
# Launch the Gradio application
|
285 |
CHATBOT.launch(share=True)
|
286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|