from ragatouille import RAGPretrainedModel import subprocess import json import spaces import firebase_admin from firebase_admin import credentials, firestore import logging from pathlib import Path from time import perf_counter from datetime import datetime import gradio as gr from jinja2 import Environment, FileSystemLoader import numpy as np from sentence_transformers import CrossEncoder from huggingface_hub import InferenceClient from os import getenv from backend.query_llm import generate_hf, generate_openai from backend.semantic_search import table, retriever from huggingface_hub import InferenceClient VECTOR_COLUMN_NAME = "vector" TEXT_COLUMN_NAME = "text" HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") proj_dir = Path(__file__).parent # Setting up the logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) # Set up the template environment with the templates directory env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) # Load the templates directly from the environment template = env.get_template('template.j2') template_html = env.get_template('template_html.j2') #___________________ # service_account_key='firebase.json' # # Create a Certificate object from the service account info # cred = credentials.Certificate(service_account_key) # # Initialize the Firebase Admin # firebase_admin.initialize_app(cred) # # # Create a reference to the Firestore database # db = firestore.client() # #db usage # collection_name = 'Nirvachana' # Replace with your collection name # field_name = 'message_count' # Replace with your field name for count # Examples examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond', 'What are benefits of the AEO Scheme and eligibility criteria?', 'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD'] # def get_and_increment_value_count(db , collection_name, field_name): # """ # Retrieves a value count from the specified Firestore collection and field, # increments it by 1, and updates the field with the new value.""" # collection_ref = db.collection(collection_name) # doc_ref = collection_ref.document('count_doc') # Assuming a dedicated document for count # # Use a transaction to ensure consistency across reads and writes # try: # with db.transaction() as transaction: # # Get the current value count (or initialize to 0 if it doesn't exist) # current_count_doc = doc_ref.get() # current_count_data = current_count_doc.to_dict() # if current_count_data: # current_count = current_count_data.get(field_name, 0) # else: # current_count = 0 # # Increment the count # new_count = current_count + 1 # # Update the document with the new count # transaction.set(doc_ref, {field_name: new_count}) # return new_count # except Exception as e: # print(f"Error retrieving and updating value count: {e}") # return None # Indicate error # def update_count_html(): # usage_count = get_and_increment_value_count(db ,collection_name, field_name) # ccount_html = gr.HTML(value=f""" #
# No of Usages: # {usage_count} #
# """) # return count_html # def store_message(db,query,answer,cross_encoder): # timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") # # Create a new document reference with a dynamic document name based on timestamp # new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}") # new_completion.set({ # 'query': query, # 'answer':answer, # 'created_time': firestore.SERVER_TIMESTAMP, # 'embedding': cross_encoder, # 'title': 'Expenditure observer bot' # }) def add_text(history, text): history = [] if history is None else history history = history + [(text, None)] return history, gr.Textbox(value="", interactive=False) def bot(history, cross_encoder): top_rerank = 25 top_k_rank = 20 query = history[-1][0] if not query: gr.Warning("Please submit a non-empty string as a prompt") raise ValueError("Empty string was submitted") logger.warning('Retrieving documents...') # if COLBERT RAGATATOUILLE PROCEDURE : if cross_encoder=='(HIGH ACCURATE) ColBERT': gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') documents_full=RAG_db.search(query,k=top_k_rank) documents=[item['content'] for item in documents_full] # Create Prompt prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) generate_fn = generate_hf history[-1][1] = "" for character in generate_fn(prompt, history[:-1]): history[-1][1] = character yield history, prompt_html print('Final history is ',history) #store_message(db,history[-1][0],history[-1][1],cross_encoder) else: # Retrieve documents relevant to query document_start = perf_counter() query_vec = retriever.encode(query) logger.warning(f'Finished query vec') doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) logger.warning(f'Finished search') documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() documents = [doc[TEXT_COLUMN_NAME] for doc in documents] logger.warning(f'start cross encoder {len(documents)}') # Retrieve documents relevant to query query_doc_pair = [[query, doc] for doc in documents] if cross_encoder=='(FAST) MiniLM-L6v2' : cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') elif cross_encoder=='(ACCURATE) BGE reranker': cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') cross_scores = cross_encoder1.predict(query_doc_pair) sim_scores_argsort = list(reversed(np.argsort(cross_scores))) logger.warning(f'Finished cross encoder {len(documents)}') documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] logger.warning(f'num documents {len(documents)}') document_time = perf_counter() - document_start logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') # Create Prompt prompt = template.render(documents=documents, query=query) prompt_html = template_html.render(documents=documents, query=query) generate_fn = generate_hf history[-1][1] = "" for character in generate_fn(prompt, history[:-1]): history[-1][1] = character yield history, prompt_html print('Final history is ',history) #store_message(db,history[-1][0],history[-1][1],cross_encoder) def system_instructions(question_difficulty, topic,documents_str): return f""" [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" RAG_db = gr.State() def load_model(): try: # Initialize the model RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") # Load the RAG database RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') return 'Ready to Go!!' except Exception as e: return f"Error loading model: {e}" def generate_quiz(question_difficulty, topic): if not topic.strip(): return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)] top_k_rank = 10 # Load the model and database within the generate_quiz function try: RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') gr.Warning('Model loaded!') except Exception as e: return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)] RAG_db_ = RAG_db.value documents_full = RAG_db_.search(topic, k=top_k_rank) generate_kwargs = dict( temperature=0.2, max_new_tokens=4000, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42, ) question_radio_list = [] count = 0 while count <= 3: try: documents = [item['content'] for item in documents_full] document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] documents_str = '\n'.join(document_summaries) formatted_prompt = system_instructions(question_difficulty, topic, documents_str) pre_prompt = [ {"role": "system", "content": formatted_prompt} ] response = client.text_generation( formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, ) output_json = json.loads(f"{response}") global quiz_data quiz_data = output_json for question_num in range(1, 11): question_key = f"Q{question_num}" answer_key = f"A{question_num}" question = quiz_data.get(question_key) answer = quiz_data.get(quiz_data.get(answer_key)) if not question or not answer: continue choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) question_radio_list.append(radio) if len(question_radio_list) == 10: break else: count += 1 continue except Exception as e: count += 1 if count == 3: return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)] continue return ['Quiz Generated!'] + question_radio_list def compare_answers(*user_answers): user_answer_list = user_answers answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)] score = sum(1 for answer in user_answer_list if answer in answers_list) if score > 7: message = f"### Excellent! You got {score} out of 10!" elif score > 5: message = f"### Good! You got {score} out of 10!" else: message = f"### You got {score} out of 10! Don’t worry, you can prepare well and try better next time!" return message #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: with gr.Row(): with gr.Column(scale=10): # gr.Markdown( # """ # # Theme preview: `paris` # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`. # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version # of this theme. # """ # ) gr.HTML(value="""

ADWITIYA-

Custom Manual Chatbot and Quizbot

""", elem_id='heading') gr.HTML(value=f"""

Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers

""", elem_id='Sub-heading') #usage_count = get_and_increment_value_count(db,collection_name, field_name) gr.HTML(value=f"""

Developed by NCTC,Mumbai . Suggestions may be sent to ramyadevi1607@yahoo.com.

""", elem_id='Sub-heading1 ') with gr.Column(scale=3): gr.Image(value='logo.png',height=200,width=200) # gr.HTML(value="""

CHEERFULL CBSE-

AI Assisted Fun Learning

# Chatbot #
""", elem_id='heading') # gr.HTML(value=f""" #

# A free Artificial Intelligence Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry. #

# """, elem_id='Sub-heading') # #usage_count = get_and_increment_value_count(db,collection_name, field_name) # gr.HTML(value=f"""

Developed by K M Ramyasri , PGT . Suggestions may be sent to ramyadevi1607@yahoo.com.

""", elem_id='Sub-heading1 ') # # count_html = gr.HTML(value=f""" # #
# # No of Usages: # # {usage_count} # #
# # """) chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), bubble_full_width=False, show_copy_button=True, show_share_button=True, ) with gr.Row(): txt = gr.Textbox( scale=3, show_label=False, placeholder="Enter text and press enter", container=False, ) txt_btn = gr.Button(value="Submit text", scale=1) cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") prompt_html = gr.HTML() # Turn off interactivity while generating if you click txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) # Turn off interactivity while generating if you hit enter txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) # Turn it back on txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) # Examples gr.Examples(examples, txt) with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: with gr.Column(scale=4): gr.HTML("""

ADWITIYA Customs Manual Quizbot

Generative AI-powered Capacity building for Training Officers

⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! ⚠️
""") with gr.Column(scale=2): gr.HTML("""

Ready!

""") # load_btn = gr.Button("Click to Load!🚀") # load_text = gr.Textbox() # load_btn.click(fn=load_model, outputs=load_text) topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") with gr.Row(): radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") generate_quiz_btn = gr.Button("Generate Quiz!🚀") quiz_msg = gr.Textbox() question_radios = [gr.Radio(visible=False) for _ in range(10)] generate_quiz_btn.click( fn=generate_quiz, inputs=[radio, topic], outputs=[quiz_msg] + question_radios ) check_button = gr.Button("Check Score") score_textbox = gr.Markdown() check_button.click( fn=compare_answers, inputs=question_radios, outputs=score_textbox ) demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"]) demo.queue() demo.launch(debug=True) # RAG_db=gr.State() # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: # def load_model(): # RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") # RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') # return 'Ready to Go!!' # with gr.Column(scale=4): # gr.HTML(""" #
#

ADWITIYA Customs Manual Quizbot

#

Generative AI-powered Capacity building for Training Officers

# ⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! ⚠️ #
# """) # #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') # with gr.Column(scale=2): # load_btn = gr.Button("Click to Load!🚀") # load_text=gr.Textbox() # load_btn.click(load_model,[],load_text) # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") # with gr.Row(): # radio = gr.Radio( # ["easy", "average", "hard"], label="How difficult should the quiz be?" # ) # generate_quiz_btn = gr.Button("Generate Quiz!🚀") # quiz_msg=gr.Textbox() # question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( # visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio( # visible=False), gr.Radio(visible=False), gr.Radio(visible=False)] # print(question_radios) # @spaces.GPU # @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz") # def generate_quiz(question_difficulty, topic): # top_k_rank=10 # RAG_db_=RAG_db.value # documents_full=RAG_db_.search(topic,k=top_k_rank) # generate_kwargs = dict( # temperature=0.2, # max_new_tokens=4000, # top_p=0.95, # repetition_penalty=1.0, # do_sample=True, # seed=42, # ) # question_radio_list = [] # count=0 # while count<=3: # try: # documents=[item['content'] for item in documents_full] # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] # documents_str='\n'.join(document_summaries) # formatted_prompt = system_instructions( # question_difficulty, topic,documents_str) # print(formatted_prompt) # pre_prompt = [ # {"role": "system", "content": formatted_prompt} # ] # response = client.text_generation( # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, # ) # output_json = json.loads(f"{response}") # print(response) # print('output json', output_json) # global quiz_data # quiz_data = output_json # for question_num in range(1, 11): # question_key = f"Q{question_num}" # answer_key = f"A{question_num}" # question = quiz_data.get(question_key) # answer = quiz_data.get(quiz_data.get(answer_key)) # if not question or not answer: # continue # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] # choice_list = [] # for choice_key in choice_keys: # choice = quiz_data.get(choice_key, "Choice not found") # choice_list.append(f"{choice}") # radio = gr.Radio(choices=choice_list, label=question, # visible=True, interactive=True) # question_radio_list.append(radio) # if len(question_radio_list)==10: # break # else: # print('10 questions not generated . So trying again!') # count+=1 # continue # except Exception as e: # count+=1 # print(f"Exception occurred: {e}") # if count==3: # print('Retry exhausted') # gr.Warning('Sorry. Pls try with another topic !') # else: # print(f"Trying again..{count} time...please wait") # continue # print('Question radio list ' , question_radio_list) # return ['Quiz Generated!']+ question_radio_list # check_button = gr.Button("Check Score") # score_textbox = gr.Markdown() # @check_button.click(inputs=question_radios, outputs=score_textbox) # def compare_answers(*user_answers): # user_anwser_list = [] # user_anwser_list = user_answers # answers_list = [] # for question_num in range(1, 20): # answer_key = f"A{question_num}" # answer = quiz_data.get(quiz_data.get(answer_key)) # if not answer: # break # answers_list.append(answer) # score = 0 # for item in user_anwser_list: # if item in answers_list: # score += 1 # if score>5: # message = f"### Good ! You got {score} over 10!" # elif score>7: # message = f"### Excellent ! You got {score} over 10!" # else: # message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !" # return message # demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Quizbot"]) # demo.queue() # demo.launch(debug=True)